simSY | R Documentation |
IFS similarity measure values using simSY computation technique with membership,non-membership, and hesitancy values of two objects or set of objects.
simSY(ma, na, mb, nb, ha, hb, k)
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ha |
IFS hesitancy values for the data set x |
hb |
IFS hesitancy values for the data set y |
k |
A constant value, considered as 1 |
The IFS similarity values of data set y with data set x
L. Shi and J. Ye. Study on fault diagnosis of turbine using an improved cosine similarity measure for vague sets. Journal of Applied Sciences, 13(10):1781 - 1786, 2013.
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4) y<-matrix(c(11,21,6),nrow=1) a<-mn(x) b<-std(x) a1<-mn(y) b1<-std(y) lam<-0.5 ma<-memG(a,b,x) na<-nonmemS(ma,lam) ha<-hmemIFS(ma,na) mb<-memG(a1,b1,y) nb<-nonmemS(mb,lam) hb<-hmemIFS(mb,nb) k<-1 simSY(ma,na,mb,nb,ha,hb,k) #[1] 0.8982202 0.8904059 0.9890627 0.9890627
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.