simM | R Documentation |
IFS similarity measure values using simM computation technique with membership,non-membership, and hesitancy values of two objects or set of objects.
simM(ma, na, mb, nb, p, k)
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
p |
Lp norm values for measuring the p-norm distance between x and y, values range from 1 to 5 |
k |
A constant value, considered as 1 |
The IFS similarity values of data set y with data set x
H. B. Mitchell. On the dengfeng–chuntian similarity measure and its application to pattern recognition. Pattern Recognition Letters, 24(16):3101 - 3104, 2003.
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4) y<-matrix(c(11,21,6),nrow=1) a<-mn(x) b<-std(x) a1<-mn(y) b1<-std(y) lam<-0.5 ma<-memG(a,b,x) na<-nonmemS(ma,lam) ha<-hmemIFS(ma,na) mb<-memG(a1,b1,y) nb<-nonmemS(mb,lam) hb<-hmemIFS(mb,nb) p<-2 k<-1 simM(ma,na,mb,nb,p,k) #[1] 0.3840287 0.3837673 0.3849959 0.3849959
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.