simNSCA | R Documentation |
IFS similarity measure values using simNSCA computation technique with membership, and non-membership values of two objects or set of objects.
simNSCA(ma, na, mb, nb, k)
ma |
IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
k |
A constant value, considered as 1 |
The IFS similarity values of data set y with data set x
R. T. Ngan, B. C. Cuong, M. Ali, et al. H-max distance measure of intuitionistic fuzzy sets in decision making. Applied Soft Computing, 69:393 - 425, 2018.
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4) y<-matrix(c(11,21,6),nrow=1) a<-mn(x) b<-std(x) y<-matrix(c(11,24,21,12,6,11,15,21),nrow=1) a1<-mn(y) b1<-std(y) lam<-0.5 ma<-memG(a,b,x) na<-nonmemS(ma,lam) mb<-memG(a1,b1,y) nb<-nonmemS(mb,lam) k<-1 simNSCA(ma,na,mb,nb,k) #[1] 0.6928792 0.6934970 0.8754130 0.8754130
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.