kripp.alpha: calculate Krippendorff's alpha reliability coefficient

Description Usage Arguments Value Note Author(s) References Examples

View source: R/kripp.alpha.R

Description

calculates the alpha coefficient of reliability proposed by Krippendorff

Usage

1
 kripp.alpha(x, method=c("nominal","ordinal","interval","ratio"))

Arguments

x

classifier x object matrix of classifications or scores

method

data level of x

Value

A list with class '"irrlist"' containing the following components:

$method

a character string describing the method.

$subjects

the number of data objects.

$raters

the number of raters.

$irr.name

a character string specifying the name of the coefficient.

$value

value of alpha.

$stat.name

here "nil" as there is no test statistic.

$statistic

the value of the test statistic (NULL).

$p.value

the probability of the test statistic (NULL).

cm

the concordance/discordance matrix used in the calculation of alpha

data.values

a character vector of the unique data values

levx

the unique values of the ratings

nmatchval

the count of matches, used in calculation

data.level

the data level of the ratings ("nominal","ordinal", "interval","ratio")

Note

Krippendorff's alpha coefficient is particularly useful where the level of measurement of classification data is higher than nominal or ordinal.

Author(s)

Jim Lemon

References

Krippendorff, K. (1980). Content analysis: An introduction to its methodology. Beverly Hills, CA: Sage.

Examples

1
2
3
4
5
6
7
8
9
 # the "C" data from Krippendorff
 nmm<-matrix(c(1,1,NA,1,2,2,3,2,3,3,3,3,3,3,3,3,2,2,2,2,1,2,3,4,4,4,4,4,
 1,1,2,1,2,2,2,2,NA,5,5,5,NA,NA,1,1,NA,NA,3,NA),nrow=4)
 # first assume the default nominal classification
 kripp.alpha(nmm)
 # now use the same data with the other three methods
 kripp.alpha(nmm,"ordinal")
 kripp.alpha(nmm,"interval")
 kripp.alpha(nmm,"ratio") 

Example output

Loading required package: lpSolve
 Krippendorff's alpha

 Subjects = 12 
   Raters = 4 
    alpha = 0.743 
 Krippendorff's alpha

 Subjects = 12 
   Raters = 4 
    alpha = 0.815 
 Krippendorff's alpha

 Subjects = 12 
   Raters = 4 
    alpha = 0.849 
 Krippendorff's alpha

 Subjects = 12 
   Raters = 4 
    alpha = 0.797 

irr documentation built on May 30, 2017, 3:13 a.m.