R/worker.R

Defines functions worker assignjieba

Documented in worker

#' Initialize jiebaR worker
#'
#' This function can initialize jiebaR workers. You can initialize different
#' kinds of workers including \code{mix}, \code{mp}, \code{hmm},
#' \code{query}, \code{full}, \code{tag}, \code{simhash}, and \code{keywords}.
#' see Detail for more information.
#'
#' @param type The type of jiebaR workers including \code{mix}, \code{mp}, \code{hmm}, \code{full},
#'   \code{query}, \code{tag}, \code{simhash}, and \code{keywords}.
#'
#' @param dict A path to main dictionary, default value is \code{DICTPATH},
#'  and the value is used for \code{mix}, \code{mp}, \code{query}, \code{full},
#'  \code{tag}, \code{simhash} and \code{keywords} workers.
#'
#' @param hmm A path to Hidden Markov Model, default value is \code{HMMPATH}, \code{full},
#' and the value is used for \code{mix}, \code{hmm}, \code{query},
#'  \code{tag}, \code{simhash} and \code{keywords} workers.
#'
#' @param user A path to user dictionary, default value is \code{USERPATH},
#'  and the value is used for \code{mix}, \code{full},  \code{tag} and \code{mp}  workers.
#'
#' @param idf A path to inverse document frequency, default value is \code{IDFPATH},
#'  and the value is used for \code{simhash} and \code{keywords} workers.
#'
#' @param stop_word A path to stop word dictionary, default value is \code{STOPPATH},
#'  and the value is used for \code{simhash}, \code{keywords}, \code{tagger} and \code{segment} workers. Encoding of this file is checked by \code{file_coding}, and it should be UTF-8 encoding. For \code{segment} workers, the default \code{STOPPATH} will not be used, so you should provide another file path.
#'
#' @param write Whether to write the output to a file, or return
#'   a the result in a object. This value will only be used when
#'   the input is a file path. The default value is TRUE. The value
#'   is used for segment and speech tagging workers.
#'
#' @param qmax Max query length of words, and the value
#'   is used for \code{query} workers.
#'
#' @param topn The number of keywords, and the value is used for
#'   \code{simhash} and \code{keywords} workers.
#'
#' @param encoding The encoding of the input file. If encoding
#'   detection is enable, the value of \code{encoding} will be
#'   ignore.
#'
#' @param user_weight the weight of the user dict words. "min" "max" or "median".
#'
#' @param detect Whether to detect the encoding of input file
#'  using \code{file_coding} function. If encoding
#'  detection is enable, the value of \code{encoding} will be
#'  ignore.
#'
#' @param symbol Whether to keep symbols in the sentence.
#'
#' @param lines The maximal number of lines to read at one
#'   time when input is a file. The value
#'   is used for segmentation and speech tagging  workers.
#'
#' @param output A path to the output file, and default worker will
#'   generate file name by system time stamp, the value
#'   is used for segmentation and speech tagging  workers.
#'
#' @param bylines return the result by the lines of input files
#'
#' @return  This function returns an environment containing segmentation
#' settings and worker. Public settings can be modified
#' using \code{$}.
#'
#' @details
#' The package uses initialized engines for word segmentation, and you
#' can initialize multiple engines simultaneously. You can also reset the model
#' public settings using \code{$} such as
#' \code{ WorkerName$symbol = T }. Some private settings are fixed
#' when a engine is initialized, and you can get then by
#' \code{WorkerName$PrivateVarible}.
#'
#' Maximum probability segmentation model uses Trie tree to construct
#' a directed acyclic graph and uses dynamic programming algorithm. It
#' is the core segmentation algorithm. \code{dict} and \code{user}
#' should be provided when initializing jiebaR worker.
#'
#' Hidden Markov Model uses HMM model to determine status set and
#' observed set of words. The default HMM model is based on People's Daily
#' language library. \code{hmm} should be provided when initializing
#' jiebaR worker.
#'
#' MixSegment model uses both Maximum probability segmentation model
#' and Hidden Markov Model to construct segmentation.  \code{dict}
#' \code{hmm} and \code{user} should be provided when initializing
#' jiebaR worker.
#'
#'
#' QuerySegment model uses MixSegment to construct segmentation and then
#' enumerates all the possible long words in the dictionary.  \code{dict},
#' \code{hmm} and \code{qmax} should be provided when initializing
#' jiebaR worker.
#'
#' FullSegment model will enumerates all the possible words in the dictionary.
#'
#' Speech Tagging worker uses MixSegment model to cut word and
#' tag each word after segmentation using labels compatible with
#' ictclas.  \code{dict},
#' \code{hmm} and \code{user} should be provided when initializing
#' jiebaR worker.
#'
#' Keyword Extraction worker uses MixSegment model to cut word and use
#' TF-IDF algorithm to find the keywords.  \code{dict} ,\code{hmm},
#' \code{idf}, \code{stop_word} and \code{topn} should be provided when initializing
#' jiebaR worker.
#'
#' Simhash worker uses the keyword extraction worker to find the keywords
#' and uses simhash algorithm to compute simhash.  \code{dict}
#' \code{hmm}, \code{idf} and \code{stop_word} should be provided when initializing
#' jiebaR worker.
#'
#' @examples
#' ### Note: Can not display Chinese characters here.
#' \dontrun{
#' words = "hello world"
#' engine1 = worker()
#' segment(words, engine1)
#'
#' # "./temp.txt" is a file path
#'
#' segment("./temp.txt", engine1)
#'
#' engine2 = worker("hmm")
#' segment("./temp.txt", engine2)
#'
#' engine2$write = T
#' segment("./temp.txt", engine2)
#'
#' engine3 = worker(type = "mix", dict = "dict_path",symbol = T)
#' segment("./temp.txt", engine3)
#'  }
#'
#' \dontrun{
#' ### Keyword Extraction
#' engine = worker("keywords", topn = 1)
#' keywords(words, engine)
#'
#' ### Speech Tagging
#' tagger = worker("tag")
#' tagging(words, tagger)
#'
#' ### Simhash
#' simhasher = worker("simhash", topn = 1)
#' simhash(words, simhasher)
#' distance("hello world" , "hello world!" , simhasher)
#'
#' show_dictpath()
#' }
#' @export
worker <- function(type = "mix", dict = DICTPATH, hmm = HMMPATH,
                   user = USERPATH, idf = IDFPATH, stop_word = STOPPATH, write = T,
                   qmax = 20, topn = 5, encoding = "UTF-8", detect = T, symbol = F,
                   lines = 1e+05, output = NULL, bylines = F, user_weight = "max")
{
  if(!any(type == c("mix","mp","hmm","query","simhash","keywords","tag","full"))){
    stop("unknown worker type")
  }
  stopifnot(user_weight %in% c("median","min","max"))
  jiebapath <- find.package("jiebaRD")

  # unzip files
  #
  if(!file.exists(file.path(TEMPPATH,"dict","jieba.dict.utf8"))){
    try(unzip(file.path(jiebapath,"dict","jieba.dict.zip"),exdir =file.path(TEMPPATH,"dict") ) )
  }
  if(!file.exists(file.path(TEMPPATH,"dict","hmm_model.utf8"))){
    try(unzip(file.path(jiebapath,"dict","hmm_model.zip"),exdir =file.path(TEMPPATH,"dict") ) )
  }
  if(!file.exists(file.path(TEMPPATH,"dict","idf.utf8"))){
    try(unzip(file.path(jiebapath,"dict","idf.zip"),exdir =file.path(TEMPPATH,"dict") ) )
  }

  # set up result
  #
  result = new.env(parent = emptyenv())
  stop2 = if(stop_word==STOPPATH) NULL else stop_word

  if(!is.null(stop2)){
    if(!file.exists(stop2)){
      stop("There is no such file for stop words.")
    }
    encodings = suppressWarnings(file_coding(stop2))
    if(encodings != "UTF-8" && encodings != "binary"){
      cat("Encoding of stop words file: ",encodings,"\n")
      warning("stop words file should be UTF-8 encoding.")
    }
  }
  if(user_weight == "min")    uw=1L
  if(user_weight == "median") uw=2L
  if(user_weight == "max")    uw=3L
  if(type %in% c("mix","query","hmm","mp","tag","full")){
    worker  = jiebaclass_ptr_v2(dict, hmm, user,stop2,uw)
    private = list(dict = dict,user = user, hmm = hmm, stop_word= stop2,user_weight = user_weight, timestamp = TIMESTAMP)
    assignjieba(worker,detect,encoding,symbol,lines,output,write,private,bylines,result)
    result$max_word_length = qmax
    result$default = type
    class(result) <- c("jiebar","segment","jieba")
    return(result)
  }

  if(type == "simhash"){
    worker  = sim_ptr(dict,hmm,idf,stop_word,user)
    private = list(dict=dict,hmm=hmm, user = user, idf=idf,stop_word=stop_word, timestamp = TIMESTAMP)
    assignjieba(worker,detect,encoding,symbol,lines,output,write,private,bylines,result)
    class(result) <- c("jiebar","nonsegment","simhash")
    result$topn = topn
    return(result)
  }

  if(type == "keywords"){
    worker  =  key_ptr(topn, dict,hmm,idf,stop_word,user)
    private = list(top_n_word=topn,dict=dict,hmm=hmm,user=user,idf=idf,stop_word=stop_word, timestamp = TIMESTAMP)
    assignjieba(worker,detect,encoding,symbol,lines,output,write,private,bylines,result)
    class(result) <- c("jiebar","nonsegment","keywords")
    return(result)
  }

}

assignjieba<-function(worker,detect,encoding,symbol,lines,output,write,private,bylines,result){
  assign(x = "worker",value = worker,envir = result)
  assign(x = "detect",value = detect,envir = result)
  assign(x = "symbol",value = symbol,envir = result)
  assign(x = "lines",value = lines,envir = result)
  assign(x = "output",value = output,envir = result)
  assign(x = "write",value = write,envir = result)
  assign(x = "PrivateVarible",value = private,envir = result)
  assign(x = "encoding",value = encoding, envir=result)
  assign(x = "bylines",value = bylines, envir=result)
}

Try the jiebaR package in your browser

Any scripts or data that you put into this service are public.

jiebaR documentation built on Dec. 16, 2019, 1:19 a.m.