Nothing
#' @title Joint model for BIG data using FastJM
#' @description function for joint model in BIG DATA using \code{FastJM}
#' @param dtlong longitudinal dataset, which contains id,visit time,longitudinal measurements along with various covariates
#' @param dtsurv survival dataset corresponding to the longitudinal dataset, with survival status and survival time
#' @param longm model for longitudinal response
#' @param survm survival model
#' @param samplesize sample size to divide the Big data
#' @param rd random effect part
#' @param id name of id column in longitudinal dataset
#' @return returns a list containing various output which are useful for prediction.
#' @importFrom FastJM jmcs
#' @importFrom stats pnorm
#' @export
#' @references Li, Shanpeng, et al. "Efficient Algorithms and Implementation of a Semiparametric Joint Model for Longitudinal and Competing Risk Data: With Applications to Massive Biobank Data." Computational and Mathematical Methods in Medicine 2022 (2022).
#' @examples
#' \donttest{
#' ##
#' library(survival)
#' library(dplyr)
#' fit2<-jmcsBig(dtlong=data.frame(long2),dtsurv = data.frame(surv2),
#' longm=y~ x7+visit,survm=Surv(time,status)~x1+visit,rd= ~ visit|id,samplesize=200,id='id')
#' print(fit2)
#' ##
#' }
#'
#'
#' @author Atanu Bhattacharjee, Bhrigu Kumar Rajbongshi and Gajendra Kumar Vishwakarma
#' @seealso \link{jmbayesBig},\link{jmstanBig},\link{joinRMLBig}
jmcsBig<-function(dtlong,dtsurv,longm,survm,samplesize=50,rd,id){
cl<-match.call()
if(!id%in%names(dtlong) ){
stop("\n Longitudinal data must have column 'id' ")
}
if(!id%in%names(dtsurv) ){
stop("\n Survival data must have column 'id' ")
}
if(!names(dtlong)[names(dtlong)==id]==names(dtsurv)[names(dtsurv)==id]){
stop("\n'dtlong' and 'dtsurv' must have same id.")
}
#if(!timeVar%in%names(dtlong)){
#stop("\n 'timeVar' should be in longitudinal dataset")
#}
# Preparing the data
dtlong<-dtlong
dtsurv<-dtsurv
if(names(dtlong)[names(dtlong)==id]=='id'){dtlong<-dtlong}else{
dtlong<-dtlong; names(dtlong)[names(dtlong)==id]<-'id'}
if(names(dtsurv)[names(dtsurv)==id]=='id'){dtsurv<-dtsurv}else{
dtsurv<-dtsurv; names(dtsurv)[names(dtsurv)==id]<-'id'}
nr<-nrow(dtsurv)
samplesize=samplesize# sample of size 50 from the survival data
dtsurv1<-split(dtsurv,rep(1:ceiling(nr/samplesize),each=samplesize,length.out=nr))
lid<-nr-(floor(nr/samplesize)*samplesize)
if(lid!=0){
maxdt<-length(dtsurv1)
leftID<-dtsurv1[[maxdt]]$id
dtsurv1[[maxdt]]<-rbind(dtsurv1[[maxdt-1]][(length(leftID)+1):samplesize,],dtsurv1[[maxdt]])
#dtsurv1[[maxdt]]<-NULL
}else{
dtsurv1<-dtsurv1
}
f1<-function(x){
return(max(unique(x$id)))
}
nk<-as.vector(unlist(lapply(dtsurv1,f1)))
nk1<-c()
for(j in 1:length(nk)){
nk1[j]<-nrow(dtlong[dtlong$id<=nk[j],])
}
nk2<-c(0,nk1[-length(nk1)])
nk3<-nk1-nk2
dtlong1<-split(dtlong,rep(1:ceiling(nr/samplesize),times=as.vector(nk3)))
dtlong1[[length(dtlong1)]]<-dtlong[dtlong$id%in%dtsurv1[[length(dtsurv1)]]$id,]
rlist<-list();betalist<-list()
gammalist<-list();nulist<-list();vcovlist<-list()
updatebeta<-0;updategamma<-0;updatenu<-0;updatevcov<-0
for(i in 1:ceiling(nr/samplesize)){#floor(nr/samplesize)
# Y ~ X1+X2+time+(1|id)
# survival::Surv(Time, status) ~ X1+X2
# ydata=dtlong[dtlong$id<230,],cdata = dtsurv[dtsurv$id<230,],longm=Y ~ X1+X2+time,survm=Surv(Time, status) ~ X1+X2,rd=~1|id
mod1 <- jmcs(long.formula =longm,
ydata = data.frame(dtlong1[[i]]),
surv.formula = survm,
cdata = data.frame(dtsurv1[[i]]),
random=rd
)
rlist[[i]]<-mod1
#uprlist[[i]]<-summary(mod1, probs = c(.025,.975))
# here we have considered only the estimate part fro the mod1 object
betalist[[i]]<-mod1$beta
gammalist[[i]]<-mod1$gamma1
nulist[[i]]<-mod1$nu1
vcovlist[[i]]<-mod1$vcov
if(i==1){updatebeta<-betalist[[1]];updategamma<-gammalist[[1]]; updatenu<-nulist[[1]] ; updatevcov<-vcovlist[[1]]}
updatebeta<-suppressWarnings((updatebeta+betalist[[i]])/2)
#updategamma<-0;updatenu<-0
updategamma<-suppressWarnings((updategamma+gammalist[[i]])/2)
updatenu<-(updatenu+nulist[[i]])/2
updatevcov<-(updatevcov+vcovlist[[i]])/2
}
# update in mod1 object
uprlist1<-rlist
for(i in 1:length(rlist)){
uprlist1[[i]]$beta<-updatebeta
uprlist1[[i]]$gamma1<-updategamma
uprlist1[[i]]$nu1<-updatenu
uprlist1[[i]]$vcov<-updatevcov
#uprlist1[[i]]$ses$Event<-updatese[(length(mod1$ses[[1]])+1):length(updatese)]
#uprlist1[[i]]$stan_summary<-updatest
}
mod11<-NULL
mod11<-mod1
#mlist<-updatestimate
mod11$beta<-updatebeta
mod11$gamma1<-updategamma
mod11$nu1<-updatenu
mod11$vcov<-updatevcov
#Results
result<-list()
result$call<-cl
result$allmodel<-rlist
result$uprlist<-uprlist1
result$pseudoMod<-mod11
result$nr<-nr
result$samplesize<-samplesize
result$others<-list(dtlong=dtlong,dtsurv=dtsurv,longm=longm,survm=survm,rd=rd,id=id,samplesize=samplesize)
class(result)<-'jmcsBig'
result
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.