Nothing
jomo2com.MCMCchain <-
function(Y.con=NULL, Y.cat=NULL, Y.numcat=NULL, Y2.con=NULL, Y2.cat=NULL, Y2.numcat=NULL, X=NULL, X2=NULL, Z=NULL, clus, beta.start=NULL, l2.beta.start=NULL, u.start=NULL, l1cov.start=NULL, l2cov.start=NULL, l1cov.prior=NULL, l2cov.prior=NULL, start.imp=NULL, l2.start.imp=NULL, nburn=1000, output=1, out.iter=10) {
if (is.null(X)) X=matrix(1,max(nrow(Y.cat),nrow(Y.con)),1)
if (is.null(X2)) X2=matrix(1,max(nrow(Y2.cat),nrow(Y2.con)),1)
if (is.null(Z)) Z=matrix(1,nrow(X),1)
if (is.null(beta.start)) beta.start=matrix(0,ncol(X),(max(0,ncol(Y.con))+max(0,(sum(Y.numcat)-length(Y.numcat)))))
if (is.null(l2.beta.start)) l2.beta.start=matrix(0,ncol(X2),(max(0,ncol(Y2.con))+max(0,(sum(Y2.numcat)-length(Y2.numcat)))))
if (is.null(l1cov.start)) l1cov.start=diag(1,ncol(beta.start))
if (is.null(l1cov.prior)) l1cov.prior=diag(1,ncol(l1cov.start))
if (is_tibble(Y.con)) {
Y.con<-data.frame(Y.con)
warning("tibbles not supported. Y.con converted to standard data.frame. ")
}
if (is_tibble(Y.cat)) {
Y.cat<-data.frame(Y.cat)
warning("tibbles not supported. Y.cat converted to standard data.frame. ")
}
if (is_tibble(Y2.con)) {
Y2.con<-data.frame(Y2.con)
warning("tibbles not supported. Y2.con converted to standard data.frame. ")
}
if (is_tibble(Y2.cat)) {
Y2.cat<-data.frame(Y2.cat)
warning("tibbles not supported. Y2.cat converted to standard data.frame. ")
}
if (is_tibble(X)) {
X<-data.frame(X)
warning("tibbles not supported. X converted to standard data.frame. ")
}
if (is_tibble(Z)) {
Z<-data.frame(Z)
warning("tibbles not supported. Z converted to standard data.frame. ")
}
if (is_tibble(X2)) {
X2<-data.frame(X2)
warning("tibbles not supported. X2 converted to standard data.frame. ")
}
clus<-factor(unlist(clus))
previous_levels_clus<-levels(clus)
levels(clus)<-0:(nlevels(clus)-1)
ncolYcon=max(0,ncol(Y.con))
ncolY2con=max(0,ncol(Y2.con))
stopifnot(((!is.null(Y.con))||(!is.null(Y.cat)&!is.null(Y.numcat))),((!is.null(Y2.con))||(!is.null(Y2.cat)&!is.null(Y2.numcat))))
if (is.null(u.start)) u.start = matrix(0, nlevels(clus), ncol(Z)*(ncolYcon+max(0,(sum(Y.numcat)-length(Y.numcat))))+(ncolY2con+max(0,(sum(Y2.numcat)-length(Y2.numcat)))))
if (is.null(l2cov.start)) l2cov.start = diag(1, ncol(u.start))
if (is.null(l2cov.prior)) l2cov.prior = diag(1, ncol(l2cov.start))
if (!is.null(Y.cat)) {
isnullcat=0
previous_levels<-list()
Y.cat<-data.frame(Y.cat)
for (i in 1:ncol(Y.cat)) {
Y.cat[,i]<-factor(Y.cat[,i])
previous_levels[[i]]<-levels(Y.cat[,i])
levels(Y.cat[,i])<-1:nlevels(Y.cat[,i])
}
} else {
isnullcat=1
Y.cat=-999
Y.numcat=-999
}
if (!is.null(Y2.cat)) {
isnullcat2=0
previous_levels2<-list()
Y2.cat<-data.frame(Y2.cat)
for (i in 1:ncol(Y2.cat)) {
Y2.cat[,i]<-factor(Y2.cat[,i])
previous_levels2[[i]]<-levels(Y2.cat[,i])
levels(Y2.cat[,i])<-1:nlevels(Y2.cat[,i])
}
} else {
isnullcat2=1
Y2.cat=-999
Y2.numcat=-999
}
for (i in 1:ncol(X)) {
if (is.factor(X[,i])) X[,i]<-as.numeric(X[,i])
}
for (i in 1:ncol(X2)) {
if (is.factor(X2[,i])) X2[,i]<-as.numeric(X2[,i])
}
for (i in 1:ncol(Z)) {
if (is.factor(Z[,i])) Z[,i]<-as.numeric(Z[,i])
}
if (!is.null(Y.con)) {
stopifnot(nrow(Y.con)==nrow(clus),nrow(Y.con)==nrow(X), nrow(Z)==nrow(Y.con))
}
if (isnullcat==0) {
stopifnot(nrow(Y.cat)==nrow(clus),nrow(Y.cat)==nrow(X), nrow(Z)==nrow(Y.cat))
}
if (!is.null(Y2.con)) {
stopifnot(nrow(Y2.con)==nrow(clus),nrow(Y2.con)==nrow(X), nrow(Z)==nrow(Y2.con))
}
if (isnullcat2==0) {
stopifnot(nrow(Y2.cat)==nrow(clus),nrow(Y2.cat)==nrow(X), nrow(Z)==nrow(Y2.cat))
}
stopifnot(nrow(beta.start)==ncol(X), ncol(beta.start)==(ncolYcon+max(0,(sum(Y.numcat)-length(Y.numcat)))))
stopifnot(nrow(l2.beta.start)==ncol(X2), ncol(l2.beta.start)==(ncolY2con+max(0,(sum(Y2.numcat)-length(Y2.numcat)))))
stopifnot(ncol(u.start)==ncol(Z)*(ncolYcon+max(0,(sum(Y.numcat)-length(Y.numcat))))+(ncolY2con+max(0,(sum(Y2.numcat)-length(Y2.numcat)))))
stopifnot(nrow(l1cov.start)==ncol(l1cov.start), nrow(l1cov.start)==ncol(beta.start))
stopifnot(nrow(l1cov.prior)==ncol(l1cov.prior),nrow(l1cov.prior)==nrow(l1cov.start))
stopifnot(ncol(l2cov.start)==ncol(u.start), ncol(l2cov.start)==ncol(l2cov.prior), ncol(l2cov.prior)==nrow(l2cov.prior))
betait=matrix(0,nrow(beta.start),ncol(beta.start))
for (i in 1:nrow(beta.start)) {
for (j in 1:ncol(beta.start)) betait[i,j]=beta.start[i,j]
}
beta2it=matrix(0,nrow(l2.beta.start),ncol(l2.beta.start))
for (i in 1:nrow(l2.beta.start)) {
for (j in 1:ncol(l2.beta.start)) beta2it[i,j]=l2.beta.start[i,j]
}
covit=matrix(0,nrow(l1cov.start),ncol(l1cov.start))
for (i in 1:nrow(l1cov.start)) {
for (j in 1:ncol(l1cov.start)) covit[i,j]=l1cov.start[i,j]
}
uit=matrix(0,nrow(u.start),ncol(u.start))
for (i in 1:nrow(u.start)) {
for (j in 1:ncol(u.start)) uit[i,j]=u.start[i,j]
}
covuit=matrix(0,nrow(l2cov.start),ncol(l2cov.start))
for (i in 1:nrow(l2cov.start)) {
for (j in 1:ncol(l2cov.start)) covuit[i,j]=l2cov.start[i,j]
}
if (!is.null(Y.con)) {
colnamycon<-colnames(Y.con)
Y.con<-data.matrix(Y.con)
storage.mode(Y.con) <- "numeric"
}
if (isnullcat==0) {
colnamycat<-colnames(Y.cat)
Y.cat<-data.matrix(Y.cat)
storage.mode(Y.cat) <- "numeric"
}
if (!is.null(Y2.con)) {
colnamy2con<-colnames(Y2.con)
Y2.con<-data.matrix(Y2.con)
storage.mode(Y2.con) <- "numeric"
}
if (isnullcat2==0) {
colnamy2cat<-colnames(Y2.cat)
Y2.cat<-data.matrix(Y2.cat)
storage.mode(Y2.cat) <- "numeric"
}
colnamx<-colnames(X)
colnamz<-colnames(Z)
colnamx2<-colnames(X2)
X<-data.matrix(X)
storage.mode(X) <- "numeric"
stopifnot(!any(is.na(X)))
Z<-data.matrix(Z)
storage.mode(Z) <- "numeric"
stopifnot(!any(is.na(Z)))
X2<-data.matrix(X2)
storage.mode(X2) <- "numeric"
stopifnot(!any(is.na(X2)))
clus <- matrix(as.integer(levels(clus))[clus], ncol=1)
if (!is.null(Y.con)&isnullcat==0) {
Y=cbind(Y.con,Y.cat)
Yi=cbind(Y.con, matrix(0,nrow(Y.con),(sum(Y.numcat)-length(Y.numcat))))
} else if (!is.null(Y.con)) {
Y=Y.con
Yi=Y.con
} else {
Y=Y.cat
Yi=matrix(0,nrow(Y.cat),(sum(Y.numcat)-length(Y.numcat)))
}
n.patterns<-c(0,0)
if (any(is.na(Y))) {
if (ncol(Y)==1) {
miss.pat<-matrix(c(0,1),2,1)
n.patterns[1]<-2
} else {
miss.pat<-md.pattern.mice(Y, plot=F)
miss.pat<-miss.pat[,colnames(Y)]
n.patterns[1]<-nrow(miss.pat)-1
}
} else {
miss.pat<-matrix(0,2,ncol(Y))
n.patterns[1]<-nrow(miss.pat)-1
}
miss.pat.id<-rep(0,nrow(Y))
for (i in 1:nrow(Y)) {
k <- 1
flag <- 0
while ((k <= n.patterns[1]) & (flag == 0)) {
if (all(!is.na(Y[i,])==miss.pat[k,1:(ncol(miss.pat))])) {
miss.pat.id[i] <- k
flag <- 1
} else {
k <- k + 1
}
}
}
if (!is.null(Y2.con)&isnullcat2==0) {
Y2=cbind(Y2.con,Y2.cat)
Y2i=cbind(Y2.con, matrix(0,nrow(Y2.con),(sum(Y2.numcat)-length(Y2.numcat))))
} else if (!is.null(Y2.con)) {
Y2=Y2.con
Y2i=Y2.con
} else {
Y2=Y2.cat
Y2i=matrix(0,nrow(Y2.cat),(sum(Y2.numcat)-length(Y2.numcat)))
}
if (any(is.na(Y2))) {
if (ncol(Y2)==1) {
miss.pat2<-matrix(c(0,1),2,1)
n.patterns[2]<-2
} else {
miss.pat2<-md.pattern.mice(Y2, plot=F)
miss.pat2<-miss.pat2[,colnames(Y2)]
n.patterns[2]<-nrow(miss.pat2)-1
}
} else {
miss.pat2<-matrix(0,2,ncol(Y2))
n.patterns[2]<-nrow(miss.pat2)-1
}
miss.pat.id2<-rep(0,nrow(Y2))
for (i in 1:nrow(Y2)) {
k <- 1
flag <- 0
while ((k <= n.patterns[2]) & (flag == 0)) {
if (all(!is.na(Y2[i,])==miss.pat2[k,1:(ncol(miss.pat2))])) {
miss.pat.id2[i] <- k
flag <- 1
} else {
k <- k + 1
}
}
}
h=1
if (isnullcat==0) {
for (i in 1:length(Y.numcat)) {
for (j in 1:nrow(Y)) {
if (is.na(Y.cat[j,i])) {
Yi[j,(ncolYcon+h):(ncolYcon+h+Y.numcat[i]-2)]=NA
}
}
h=h+Y.numcat[i]-1
}
}
h=1
if (isnullcat2==0) {
for (i in 1:length(Y2.numcat)) {
for (j in 1:nrow(Y2)) {
if (is.na(Y2.cat[j,i])) {
Y2i[j,(ncolY2con+h):(ncolY2con+h+Y2.numcat[i]-2)]=NA
}
}
h=h+Y2.numcat[i]-1
}
}
if (output!=1) out.iter=nburn+2
nimp=1
imp=matrix(0,nrow(Y)*(nimp+1),ncol(Y)+ncol(Y2)+ncol(X)+ncol(X2)+ncol(Z)+3)
imp[1:nrow(Y),1:ncol(Y)]=Y
imp[1:nrow(Y2),(ncol(Y)+1):(ncol(Y)+ncol(Y2))]=Y2
imp[1:nrow(X), (ncol(Y)+ncol(Y2)+1):(ncol(Y)+ncol(Y2)+ncol(X))]=X
imp[1:nrow(X2), (ncol(Y)+ncol(Y2)+ncol(X)+1):(ncol(Y)+ncol(Y2)+ncol(X)+ncol(X2))]=X2
imp[1:nrow(Z), (ncol(Y)+ncol(Y2)+ncol(X)+ncol(X2)+1):(ncol(Y)+ncol(Y2)+ncol(X)+ncol(X2)+ncol(Z))]=Z
imp[1:nrow(clus), (ncol(Y)+ncol(Y2)+ncol(X)+ncol(X2)+ncol(Z)+1)]=clus
imp[1:nrow(X), (ncol(Y)+ncol(Y2)+ncol(X)+ncol(X2)+ncol(Z)+2)]=c(1:nrow(Y))
Yimp=Yi
Yimp2=matrix(Yimp, nrow(Yimp),ncol(Yimp))
Y2imp=Y2i
Y2imp2=matrix(Y2imp, nrow(Y2imp),ncol(Y2imp))
imp[(nrow(X)+1):(2*nrow(X)),(ncol(Y)+ncol(Y2)+1):(ncol(Y)+ncol(Y2)+ncol(X))]=X
imp[(nrow(X2)+1):(2*nrow(X2)), (ncol(Y)+ncol(Y2)+ncol(X)+1):(ncol(Y)+ncol(Y2)+ncol(X)+ncol(X2))]=X2
imp[(nrow(Z)+1):(2*nrow(Z)), (ncol(Y)+ncol(Y2)+ncol(X)+ncol(X2)+1):(ncol(Y)+ncol(Y2)+ncol(X)+ncol(X2)+ncol(Z))]=Z
imp[(nrow(clus)+1):(2*nrow(clus)), (ncol(Y)+ncol(Y2)+ncol(X)+ncol(X2)+ncol(Z)+1)]=clus
imp[(nrow(X)+1):(2*nrow(X)), (ncol(Y)+ncol(Y2)+ncol(X)+ncol(X2)+ncol(Z)+2)]=c(1:nrow(Y))
imp[(nrow(X)+1):(2*nrow(X)), (ncol(Y)+ncol(Y2)+ncol(X)+ncol(X2)+ncol(Z)+3)]=1
betapost<- array(0, dim=c(nrow(beta.start),ncol(beta.start),nburn))
beta2post<- array(0, dim=c(nrow(l2.beta.start),ncol(l2.beta.start),nburn))
omegapost<- array(0, dim=c(nrow(l1cov.start),ncol(l1cov.start),nburn))
upostall<-array(0, dim=c(nrow(u.start),ncol(u.start),nburn))
covupost<- array(0, dim=c(nrow(l2cov.start),ncol(l2cov.start),nburn))
meanobs<-colMeans(Yi,na.rm=TRUE)
if (!is.null(start.imp)) {
start.imp<-as.matrix(start.imp)
if ((nrow(start.imp)!=nrow(Yimp2))||(ncol(Yimp2)>ncol(start.imp))) {
cat("start.imp dimensions incorrect. Not using start.imp as starting value for the imputed dataset.\n")
start.imp=NULL
} else {
if ((nrow(start.imp)==nrow(Yimp2))&(ncol(Yimp2)<ncol(start.imp))) {
Yimp2<-start.imp[,1:ncol(Yimp2)]
cat("NOTE: start.imp has more columns than needed. Dropping unnecessary columns.\n")
} else {
Yimp2<-start.imp
}
}
}
if (is.null(start.imp)) {
for (i in 1:nrow(Yi)) for (j in 1:ncol(Yi)) if (is.na(Yimp[i,j])) Yimp2[i,j]=meanobs[j]
}
l2.meanobs<-colMeans(Y2i,na.rm=TRUE)
if (!is.null(l2.start.imp)) {
l2.start.imp<-as.matrix(l2.start.imp)
if ((nrow(l2.start.imp)!=nrow(Y2imp2))||(ncol(Y2imp2)>ncol(l2.start.imp))) {
cat("l2.start.imp dimensions incorrect. Not using l2.start.imp as starting value for the level 2 imputed dataset.\n")
l2.start.imp=NULL
} else {
if ((nrow(l2.start.imp)==nrow(Y2imp2))&(ncol(Y2imp2)<ncol(l2.start.imp))) {
Y2imp2<-l2.start.imp[,1:ncol(Y2imp2)]
cat("NOTE: l2.start.imp has more columns than needed. Dropping unnecessary columns.\n")
} else {
Y2imp2<-l2.start.imp
}
}
}
if (is.null(l2.start.imp)) {
for (i in 1:nrow(Y2i)) for (j in 1:ncol(Y2i)) if (is.na(Y2imp[i,j])) Y2imp2[i,j]=l2.meanobs[j]
}
.Call("jomo2comC", Y, Yimp, Yimp2, Y.cat, Y2, Y2imp,Y2imp2, Y2.cat, X, X2, Z, clus,betait,beta2it,uit,betapost,beta2post,upostall,covit,omegapost, covuit, covupost, nburn, l1cov.prior,l2cov.prior,Y.numcat,Y2.numcat, ncolYcon,ncolY2con, out.iter,1, miss.pat.id, n.patterns, miss.pat.id2, PACKAGE = "jomo")
if (!is.null(Y.con)) {
imp[(nrow(X)+1):(2*nrow(X)),1:ncol(Y.con)]=Yimp2[,1:ncol(Y.con)]
}
if (isnullcat==0) {
imp[(nrow(X)+1):(2*nrow(X)),(ncolYcon+1):ncol(Y)]=Y.cat
}
if (!is.null(Y2.con)) {
imp[(nrow(X)+1):(2*nrow(X)),(ncol(Y)+1):(ncol(Y)+ncol(Y2.con))]=Y2imp2[,1:ncol(Y2.con)]
}
if (isnullcat2==0) {
imp[(nrow(X)+1):(2*nrow(X)),(ncolY2con+ncol(Y)+1):(ncol(Y)+ncol(Y2))]=Y2.cat
}
betapostmean<-apply(betapost, c(1,2), mean)
beta2postmean<-apply(beta2post, c(1,2), mean)
upostmean<-apply(upostall, c(1,2), mean)
omegapostmean<-apply(omegapost, c(1,2), mean)
covupostmean<-apply(covupost, c(1,2), mean)
imp<-data.frame(imp)
if (isnullcat==0) {
for (i in 1:ncol(Y.cat)) {
imp[,(ncolYcon+i)]<-as.factor(imp[,(ncolYcon+i)])
levels(imp[,(ncolYcon+i)])<-previous_levels[[i]]
}
}
if (isnullcat2==0) {
for (i in 1:ncol(Y2.cat)) {
imp[,(ncol(Y)+ncolY2con+i)]<-as.factor(imp[,(ncol(Y)+ncolY2con+i)])
levels(imp[,(ncol(Y)+ncolY2con+i)])<-previous_levels2[[i]]
}
}
imp[,(ncol(Y)+ncol(Y2)+ncol(X)+ncol(X2)+ncol(Z)+1)]<-factor(imp[,(ncol(Y)+ncol(Y2)+ncol(X)+ncol(X2)+ncol(Z)+1)])
levels(imp[,(ncol(Y)+ncol(Y2)+ncol(X)+ncol(X2)+ncol(Z)+1)])<-previous_levels_clus
clus<-factor(clus)
levels(clus)<-previous_levels_clus
if (ncolYcon>0) {
for (j in 1:(ncolYcon)) {
imp[,j]=as.numeric(imp[,j])
}
}
if (ncolY2con>0) {
for (j in 1:(ncolY2con)) {
imp[,ncol(Y)+j]=as.numeric(imp[,ncol(Y)+j])
}
}
for (j in (ncol(Y)+ncol(Y2)+1):(ncol(Y)+ncol(Y2)+ncol(X)+ncol(X2)+ncol(Z))) {
imp[,j]=as.numeric(imp[,j])
}
if (isnullcat==0) {
if (is.null(colnamycat)) colnamycat=paste("Ycat", 1:ncol(Y.cat), sep = "")
} else {
colnamycat=NULL
Y.cat=NULL
Y.numcat=NULL
}
if (!is.null(Y.con)) {
if (is.null(colnamycon)) colnamycon=paste("Ycon", 1:ncol(Y.con), sep = "")
} else {
colnamycon=NULL
}
if (isnullcat2==0) {
if (is.null(colnamy2cat)) colnamy2cat=paste("Y2cat", 1:ncol(Y2.cat), sep = "")
} else {
colnamy2cat=NULL
Y2.cat=NULL
Y2.numcat=NULL
}
if (!is.null(Y2.con)) {
if (is.null(colnamy2con)) colnamy2con=paste("Y2con", 1:ncol(Y2.con), sep = "")
} else {
colnamy2con=NULL
}
if (is.null(colnamz)) colnamz=paste("Z", 1:ncol(Z), sep = "")
if (is.null(colnamx)) colnamx=paste("X", 1:ncol(X), sep = "")
if (is.null(colnamx2)) colnamx2=paste("X2", 1:ncol(X2), sep = ".")
colnames(imp)<-c(colnamycon,colnamycat,colnamy2con,colnamy2cat,colnamx,colnamx2,colnamz,"clus","id","Imputation")
if (isnullcat==0) {
cnycatcomp<-rep(NA,(sum(Y.numcat)-length(Y.numcat)))
count=0
for ( j in 1:ncol(Y.cat)) {
for (k in 1:(Y.numcat[j]-1)) {
cnycatcomp[count+k]<-paste(colnamycat[j],k,sep=".")
}
count=count+Y.numcat[j]-1
}
if (!is.null(Y.con)) {
cnamycomp<-c(colnamycon,cnycatcomp)
} else {
cnamycomp<-c(cnycatcomp)
}
} else {
cnamycomp<-c(colnamycon)
}
if (isnullcat2==0) {
cny2catcomp<-rep(NA,(sum(Y2.numcat)-length(Y2.numcat)))
count=0
for ( j in 1:ncol(Y2.cat)) {
for (k in 1:(Y2.numcat[j]-1)) {
cny2catcomp[count+k]<-paste(colnamy2cat[j],k,sep=".")
}
count=count+Y2.numcat[j]-1
}
if (!is.null(Y2.con)) {
cnamy2comp<-c(colnamy2con,cny2catcomp)
} else {
cnamy2comp<-c(cny2catcomp)
}
} else {
cnamy2comp<-c(colnamy2con)
}
dimnames(betapost)[1] <- list(colnamx)
dimnames(betapost)[2] <- list(cnamycomp)
dimnames(beta2post)[1] <- list(colnamx2)
dimnames(beta2post)[2] <- list(cnamy2comp)
dimnames(omegapost)[1] <- list(cnamycomp)
dimnames(omegapost)[2] <- list(cnamycomp)
colnamcovu<-paste(cnamycomp,rep(colnamz,each=ncol(omegapost)),sep="*")
colnamcovu<-c(colnamcovu,cnamy2comp)
dimnames(covupost)[1] <- list(colnamcovu)
dimnames(covupost)[2] <- list(colnamcovu)
dimnames(upostall)[1]<-list(levels(clus))
dimnames(upostall)[2]<-list(colnamcovu)
dimnames(Yimp2)[2] <- list(cnamycomp)
dimnames(Y2imp2)[2] <- list(cnamy2comp)
betapostmean<-data.frame(apply(betapost, c(1,2), mean))
beta2postmean<-data.frame(apply(beta2post, c(1,2), mean))
upostmean<-data.frame(apply(upostall, c(1,2), mean))
omegapostmean<-data.frame(apply(omegapost, c(1,2), mean))
covupostmean<-data.frame(apply(covupost, c(1,2), mean))
if (output==1) {
cat("The posterior mean of the fixed effects estimates is:\n")
print(t(betapostmean))
cat("\nThe posterior mean of the level 2 fixed effects estimates is:\n")
print(t(beta2postmean))
cat("\nThe posterior mean of the random effects estimates is:\n")
print(upostmean)
cat("\nThe posterior mean of the level 1 covariance matrix is:\n")
print(omegapostmean)
cat("\nThe posterior mean of the level 2 covariance matrix is:\n")
print(covupostmean)
}
return(list("finimp"=imp,"collectbeta"=betapost,"collect.l2.beta"=beta2post,"collectomega"=omegapost,"collectu"=upostall, "collectcovu"=covupost, "finimp.latnorm" = Yimp2, "l2.finimp.latnorm" = Y2imp2))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.