game-class | R Documentation |
Class representing a game, i.e. a set function vanishing at the empty set (also called non monotonic fuzzy measure).
Objects can be created by calls to the function game
.
n
:Object of class numeric
of length 1 equal to the
number of elements of the set on which the game is defined.
subsets
:Object of class numeric
of length
2^n
containing the power set of the underlying set in
"natural" order. The subsets are coded as integers.
data
:Object of class numeric
of length
2^n
containing the coefficients of the game in binary
order. We necessarily have data[1] = 0
.
Class set.func
, directly.
Class superclass.set.func
, by class set.func
.
signature(object = "game")
signature(object = "game", f = "numeric")
signature(object = "game")
signature(object = "game", f = "numeric")
signature(object = "game", f =
"numeric")
signature(object = "game", f = "numeric")
signature(object = "game", f = "numeric")
signature(object = "game")
signature(object = "game")
signature(object = "game")
signature(object = "game")
game
,
as.card.game-methods
,
Choquet.integral-methods
,
Mobius-methods
,
Sipos.integral-methods
,
Sugeno.integral-methods
,
pdf.Choquet.unif-methods
,
cdf.Choquet.unif-methods
,
expect.Choquet.unif-methods
,
sd.Choquet.unif-methods
,
expect.Choquet.norm-methods
,
sd.Choquet.norm-methods
.
## a game (which is a capacity) mu <- game(c(0,rep(1,15))) ## the attributes of the object mu@n mu@data mu@subsets ## a conversion as.card.game(mu) ## a transformation Mobius(mu) ## let us check ... zeta(Mobius(mu)) ## integral calculations f <- c(0.2,0.3,0.1,0.7) Choquet.integral(mu,f) Sugeno.integral(mu,f) f <- c(0.2,-0.3,0.1,-0.7) Sipos.integral(mu,f)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.