View source: R/mini.var.capa.ident.R
mini.var.capa.ident | R Documentation |
Creates an object of class Mobius.capacity
using a
maximum like quadratic entropy principle, which is equivalent to the minimization of the
variance. More precisely, this function determines, if it exists, the minimum
variance capacity compatible with a set of linear constraints. The
problem is solved using strictly convex quadratic programming.
mini.var.capa.ident(n, k, A.Choquet.preorder = NULL,
A.Shapley.preorder = NULL, A.Shapley.interval = NULL,
A.interaction.preorder = NULL, A.interaction.interval = NULL,
A.inter.additive.partition = NULL, epsilon = 1e-6)
n |
Object of class |
k |
Object of class |
A.Choquet.preorder |
Object of class |
A.Shapley.preorder |
Object of class |
A.Shapley.interval |
Object of class |
A.interaction.preorder |
Object of class |
A.interaction.interval |
Object of class |
A.inter.additive.partition |
Object of class |
epsilon |
Object of class |
The quadratic program is solved using the solve.QP
function of
the quadprog package.
The function returns a list structured as follows:
solution |
Object of class |
value |
Value of the objective function. |
iterations |
Information returned by |
iact |
Information returned by |
K. Fujimoto and T. Murofushi (2000) Hierarchical decomposition of the Choquet integral, in: Fuzzy Measures and Integrals: Theory and Applications, M. Grabisch, T. Murofushi, and M. Sugeno Eds, Physica Verlag, pages 95-103.
I. Kojadinovic (2005), Minimum variance capacity identification, European Journal of Operational Research, in press.
Mobius.capacity-class
,
lin.prog.capa.ident
,
mini.dist.capa.ident
,
least.squares.capa.ident
,
heuristic.ls.capa.ident
,
ls.sorting.capa.ident
,
entropy.capa.ident
.
## some alternatives
a <- c(18,11,18,11,11)
b <- c(18,18,11,11,11)
c <- c(11,11,18,18,11)
d <- c(18,11,11,11,18)
e <- c(11,11,18,11,18)
## preference threshold relative
## to the preorder of the alternatives
delta.C <- 1
## corresponding Choquet preorder constraint matrix
Acp <- rbind(c(d,a,delta.C),
c(a,e,delta.C),
c(e,b,delta.C),
c(b,c,delta.C)
)
## a Shapley preorder constraint matrix
## Sh(1) - Sh(2) >= -delta.S
## Sh(2) - Sh(1) >= -delta.S
## Sh(3) - Sh(4) >= -delta.S
## Sh(4) - Sh(3) >= -delta.S
## i.e. criteria 1,2 and criteria 3,4
## should have the same global importances
delta.S <- 0.01
Asp <- rbind(c(1,2,-delta.S),
c(2,1,-delta.S),
c(3,4,-delta.S),
c(4,3,-delta.S)
)
## a Shapley interval constraint matrix
## 0.3 <= Sh(1) <= 0.9
Asi <- rbind(c(1,0.3,0.9))
## an interaction preorder constraint matrix
## such that I(12) = I(34)
delta.I <- 0.01
Aip <- rbind(c(1,2,3,4,-delta.I),
c(3,4,1,2,-delta.I))
## an interaction interval constraint matrix
## i.e. -0.20 <= I(12) <= -0.15
Aii <- rbind(c(1,2,-0.2,-0.15))
## a minimum variance 2-additive solution
min.var <- mini.var.capa.ident(5,2,A.Choquet.preorder = Acp)
m <- min.var$solution
m
## the resulting global evaluations
rbind(c(a,mean(a),Choquet.integral(m,a)),
c(b,mean(b),Choquet.integral(m,b)),
c(c,mean(c),Choquet.integral(m,c)),
c(d,mean(d),Choquet.integral(m,d)),
c(e,mean(e),Choquet.integral(m,e)))
## the Shapley value
Shapley.value(m)
## a minimum variance 3-additive more constrained solution
min.var2 <- mini.var.capa.ident(5,3,
A.Choquet.preorder = Acp,
A.Shapley.preorder = Asp)
m <- min.var2$solution
m
rbind(c(a,mean(a),Choquet.integral(m,a)),
c(b,mean(b),Choquet.integral(m,b)),
c(c,mean(c),Choquet.integral(m,c)),
c(d,mean(d),Choquet.integral(m,d)),
c(e,mean(e),Choquet.integral(m,e)))
Shapley.value(m)
## a minimum variance 5-additive more constrained solution
min.var3 <- mini.var.capa.ident(5,5,
A.Choquet.preorder = Acp,
A.Shapley.preorder = Asp,
A.Shapley.interval = Asi,
A.interaction.preorder = Aip,
A.interaction.interval = Aii)
m <- min.var3$solution
m
rbind(c(a,mean(a),Choquet.integral(m,a)),
c(b,mean(b),Choquet.integral(m,b)),
c(c,mean(c),Choquet.integral(m,c)),
c(d,mean(d),Choquet.integral(m,d)),
c(e,mean(e),Choquet.integral(m,e)))
summary(m)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.