View source: R/ls.ranking.capa.ident.R
ls.ranking.capa.ident | R Documentation |
Ranking alternatives means ordering them from the best to the worst alternative. The aim of the implemented method is to model a given ranking by means of a Choquet integral. The result of the function is an object of class Mobius.capacity
. This function is an implementation of the TOMASO method (see Meyer and Roubens (2005)) in the particular ranking framework. The input data are given under the form of a set of alternatives and a partial weak order, each alternative being described according to a set of criteria. These well-known alternatives are called "prototypes". They represent alternatives for which the decision maker has an a priori knowledge and for which he/she is able to build a ranking. If the provided ranking (partial weak order) of the prototypes cannot be described by a Choquet integral, an approximative solution, which minimizes the "gap" between the given ranking and the one derived from the Choquet integral, is proposed. The problem is solved by quadratic programming.
ls.ranking.capa.ident(n, k, C, rk, d, A.Shapley.preorder = NULL,
A.Shapley.interval = NULL, A.interaction.preorder = NULL,
A.interaction.interval = NULL, A.inter.additive.partition = NULL,
sigf = 5, maxiter = 20, epsilon = 1e-6)
n |
Object of class |
k |
Object of class |
C |
Object of class |
rk |
Object of class |
d |
Object of class |
A.Shapley.preorder |
Object of class |
A.Shapley.interval |
Object of class |
A.interaction.preorder |
Object of class |
A.interaction.interval |
Object of class |
A.inter.additive.partition |
Object of class |
sigf |
Precision (default: 5 significant figures). Parameter to
be passed to the |
maxiter |
Maximum number of iterations. Parameter to
be passed to the |
epsilon |
Object of class |
The quadratic program is solved using the ipop
function of
the kernlab package.
The function returns a list structured as follows:
solution |
Object of class
|
glob.eval |
The global evaluations satisfying the given ranking. |
how |
Information returned by |
rk.C |
The ranks of the prototypes |
Choquet.C |
The Choquet integral of the prototypes |
K. Fujimoto and T. Murofushi (2000) Hierarchical decomposition of the Choquet integral, in: Fuzzy Measures and Integrals: Theory and Applications, M. Grabisch, T. Murofushi, and M. Sugeno Eds, Physica Verlag, pages 95-103.
P. Meyer, M. Roubens (2005), Choice, Ranking and Sorting in Fuzzy Multiple Criteria Decision Aid, in: J. Figueira, S. Greco, and M. Ehrgott, Eds, Multiple Criteria Decision Analysis: State of the Art Surveys, volume 78 of International Series in Operations Research and Management Science, chapter 12, pages 471-506. Springer Science + Business Media, Inc., New York.
Mobius.capacity-class
,
lin.prog.capa.ident
,
mini.var.capa.ident
,
mini.dist.capa.ident
,
least.squares.capa.ident
,
heuristic.ls.capa.ident
,
entropy.capa.ident
.
arthur <- c(1, 1, 0.75, 0.25)
lancelot <- c(0.75, 0.75, 0.75, 0.75)
yvain <- c(1, 0.625, 0.5, 1)
perceval <- c(0.25, 0.5, 0.75, 0.75)
erec <- c(0.375, 1, 0.5 , 0.75)
P <- rbind(arthur, lancelot, yvain, perceval, erec)
# lancelot > erec; yvain > erec, erec > perceval, erec > arthur
rk.proto <- rbind(c("lancelot","erec"), c("yvain","erec"), c("erec","perceval"), c("erec","arthur"))
n<-4
k<-2
d<-0.1
## search for a capacity which satisfies the constraints
lrc <- ls.ranking.capa.ident(n ,k, P, rk.proto, d)
lrc
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.