is.monotone-methods | R Documentation |
Tests whether a set function is monotone with respect to set
inclusion. The set function
can be given either under the form of an object of class
set.func
, card.set.func
or Mobius.set.func
.
For objects of class set.func
or card.set.func
, the
monotonicity constraints are considered to be satisfied
(cf. references hereafter) if the following inequalities are satisfied
\mu(S \cup i) - \mu(S) \ge -epsilon
for all S
and all i
.
For objects of class Mobius.set.func
, it is
required that a similar condition with respect to the Möbius
representation be satisfied (cf. references hereafter).
Returns an object of class logical
. If verbose=TRUE
,
displays the violated monotonicity constraints, if any.
Returns an object of class logical
. If
verbose=TRUE
, displays the violated monotonicity
constraints, if any.
Returns an object of class logical
. If verbose=TRUE
,
displays the violated monotonicity constraints, if any.
A. Chateauneuf and J-Y. Jaffray (1989), Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion, Mathematical Social Sciences 17:3, pages 263–283.
M. Grabisch (2000), The interaction and Möbius representations of fuzzy measures on finites spaces, k-additive measures: a survey, in: Fuzzy Measures and Integrals: Theory and Applications, M. Grabisch, T. Murofushi, and M. Sugeno Eds, Physica Verlag, pages 70-93.
Mobius.set.func-class
,
card.set.func-class
,
set.func-class
.
## a monotone set function
mu <- set.func(c(0,1,1,1,2,2,2,3))
mu
is.monotone(mu)
## the Mobius representation of a monotone set function
a <- Mobius.set.func(c(0,1,2,1,3,1,2,1,2,3,1),4,2)
is.monotone(a)
## non-monotone examples
mu <- set.func(c(0,-7:7))
is.monotone(mu,verbose=TRUE)
a <- Mobius(mu)
is.monotone(a,verbose=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.