| is.monotone-methods | R Documentation |
Tests whether a set function is monotone with respect to set
inclusion. The set function
can be given either under the form of an object of class
set.func, card.set.func or Mobius.set.func.
For objects of class set.func or card.set.func, the
monotonicity constraints are considered to be satisfied
(cf. references hereafter) if the following inequalities are satisfied
\mu(S \cup i) - \mu(S) \ge -epsilon
for all S and all i.
For objects of class Mobius.set.func, it is
required that a similar condition with respect to the Möbius
representation be satisfied (cf. references hereafter).
Returns an object of class logical. If verbose=TRUE,
displays the violated monotonicity constraints, if any.
Returns an object of class logical. If
verbose=TRUE, displays the violated monotonicity
constraints, if any.
Returns an object of class logical. If verbose=TRUE,
displays the violated monotonicity constraints, if any.
A. Chateauneuf and J-Y. Jaffray (1989), Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion, Mathematical Social Sciences 17:3, pages 263–283.
M. Grabisch (2000), The interaction and Möbius representations of fuzzy measures on finites spaces, k-additive measures: a survey, in: Fuzzy Measures and Integrals: Theory and Applications, M. Grabisch, T. Murofushi, and M. Sugeno Eds, Physica Verlag, pages 70-93.
Mobius.set.func-class,
card.set.func-class,
set.func-class.
## a monotone set function
mu <- set.func(c(0,1,1,1,2,2,2,3))
mu
is.monotone(mu)
## the Mobius representation of a monotone set function
a <- Mobius.set.func(c(0,1,2,1,3,1,2,1,2,3,1),4,2)
is.monotone(a)
## non-monotone examples
mu <- set.func(c(0,-7:7))
is.monotone(mu,verbose=TRUE)
a <- Mobius(mu)
is.monotone(a,verbose=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.