Nothing
context("model-persistence")
test_succeeds("model can be saved and loaded", {
if (!keras3:::have_h5py())
skip("h5py not available for testing")
model <- define_and_compile_model()
tmp <- tempfile("model", fileext = ".hdf5")
skip("save_model_hdf5")
save_model_hdf5(model, tmp)
model <- load_model_hdf5(tmp)
})
test_succeeds("model with custom loss and metrics can be saved and loaded", {
if (!keras3:::have_h5py())
skip("h5py not available for testing")
model <- define_model()
metric_mean_pred <- custom_metric("mean_pred", function(y_true, y_pred) {
op_mean(y_pred)
})
custom_loss <- function(y_pred, y_true) {
loss_categorical_crossentropy(y_pred, y_true)
}
model %>% compile(
loss = custom_loss,
optimizer = optimizer_nadam(),
metrics = metric_mean_pred
)
tmp <- tempfile("model", fileext = ".keras")
save_model(model, tmp)
restored_model <- load_model(tmp, custom_objects = c(mean_pred = metric_mean_pred,
custom_loss = custom_loss))
# generate dummy training data
data <- matrix(rexp(1000*784), nrow = 1000, ncol = 784)
labels <- matrix(round(runif(1000*10, min = 0, max = 9)), nrow = 1000, ncol = 10)
expect_equal(
model %>% predict(data, verbose = 0),
restored_model %>% predict(data, verbose = 0)
)
model %>% fit(data, labels, epochs = 2, verbose = 0)
expect_no_error({
restored_model %>% fit(data, labels, epochs = 2, verbose = 0)
})
})
test_succeeds("model load with unnamed custom_objects", {
layer_my_dense <- new_layer_class(
"MyDense",
initialize = function(units, ...) {
super$initialize(...)
private$units <- units
self$dense <- layer_dense(units = units)
},
# TODO: warning emitted from upstream if missing build method...
# but this simple case should not need a build method
build = function(input_shape) {
self$dense$build(input_shape)
},
call = function(x, ...) {
# TODO: a call() method without any named args breaks shape inference
# for tracing, symbolic builds, and auto-calling build() w/ the correct
# input shape. Emit a warning from `new_layer_class()` if that happens?
self$dense(x, ...)
},
get_config = function() {
config <- super$get_config()
config$units <- private$units
config
}
)
# l <- layer_my_dense(,10)
# x <- random_array(3, 4)
# l(random_array(3, 4))
model <- keras_model_sequential(input_shape = 32) %>%
layer_dense(10) %>%
layer_my_dense(10) %>%
layer_dense(10)
metric_mean_pred <- custom_metric("mean_pred", function(y_true, y_pred) {
op_mean(y_pred)
})
custom_loss <- function(y_pred, y_true) {
loss_categorical_crossentropy(y_pred, y_true)
}
# TODO:
# attr(custom_loss, "name") <- "custom_loss"
# custom_loss <- py_func2(function(y_pred, y_true) {
# loss_categorical_crossentropy(y_pred, y_true)
# }, TRUE, name = "custom_loss")
model %>% compile(
loss = custom_loss,
optimizer = optimizer_nadam(),
metrics = metric_mean_pred
)
# generate dummy training data
data <- x <- random_normal(c(10, 32))
# y <- to_categorical(sample(0:9, 10, replace = TRUE))
y <- to_categorical(random_integer(10, 0, 10), 10)
model %>% fit(x, y, verbose = FALSE)
res1 <- as.array(model(data))
tmp <- tempfile("model", fileext = ".keras")
if (is_windows())
skip("save_model() errors on Windows")
# need to investigate next time on Windows
" ── Failure ('test-model-persistence.R:128:3'): model load with unnamed custom_objects ──
Expected `{ ... }` to run without any errors.
ℹ Actually got a <python.builtin.SystemError> with text:
SystemError: <built-in function call_r_function> returned a result with an exception set
Run `reticulate::py_last_error()` for details.
[ FAIL 1 | WARN 0 | SKIP 40 | PASS 513 ]"
save_model(model, tmp)
model2 <- load_model(tmp, custom_objects = list(
metric_mean_pred,
layer_my_dense,
custom_loss = custom_loss)
)
res2 <- as.array(model2(data))
expect_identical(res1, res2)
expect_no_error({
model2 %>% fit(x, y, verbose = 0)
})
})
test_succeeds("model weights can be saved and loaded", {
if (!keras3:::have_h5py())
skip("h5py not available for testing")
model <- define_and_compile_model()
tmp <- tempfile("model", fileext = ".hdf5")
skip("save_model_weights_hdf5")
save_model_weights_hdf5(model, tmp)
load_model_weights_hdf5(model, tmp)
})
test_succeeds("model can be saved and loaded from json", {
model <- define_model()
json_file <- tempfile("config-", fileext = ".json")
save_model_config(model, json_file)
model2 <- load_model_config(json_file)
json_file2 <- tempfile("config-2-", fileext = ".json")
save_model_config(model2, json_file2)
expect_identical(jsonlite::read_json(json_file),
jsonlite::read_json(json_file2))
config <- get_config(model)
attributes(config) <- attributes(config)['names']
expect_identical(jsonlite::read_json(json_file)$config,
config)
})
## patch releases removed ability to serialize to/from yaml in all the version
## going back to 2.2
# test_succeeds("model can be saved and loaded from yaml", {
#
# if (!keras3:::have_pyyaml())
# skip("yaml not available for testing")
#
# if(tf_version() >= "2.5.1")
# skip("model$to_yaml() removed in 2.6")
#
# model <- define_model()
# yaml <- model_to_yaml(model)
# model_from <- model_from_yaml(yaml)
# expect_equal(yaml, model_to_yaml(model_from))
# })
test_succeeds("model can be saved and loaded from R 'raw' object", {
if (!keras3:::have_h5py())
skip("h5py not available for testing")
model <- define_and_compile_model()
skip("serialize_model")
mdl_raw <- serialize_model(model)
model <- unserialize_model(mdl_raw)
})
test_succeeds("saved models/weights are mirrored in the run_dir", {
skip("tfruns")
run <- tfruns::training_run("train.R", echo = FALSE)
run_dir <- run$run_dir
expect_true(file.exists(file.path(run_dir, "model.h5")))
expect_true(file.exists(file.path(run_dir, "weights", "weights.h5")))
})
test_succeeds("callback output is redirected to run_dir", {
skip("tfruns")
run <- tfruns::training_run("train.R", echo = FALSE)
run_dir <- run$run_dir
if (is_backend("tensorflow"))
expect_true(file_test("-d", file.path(run_dir, "tflogs")))
expect_true(file.exists(file.path(run_dir, "cbk_checkpoint.h5")))
expect_true(file.exists(file.path(run_dir, "cbk_history.csv")))
})
test_succeeds("model can be exported to TensorFlow", {
if (!is_backend("tensorflow")) skip("not a tensorflow backend")
model <- define_and_compile_model()
model_dir <- tempfile()
skip("tensorflow::export_savedmodel")
export <- function() tensorflow::export_savedmodel(model, model_dir)
export()
model_files <- dir(model_dir, recursive = TRUE)
expect_true(any(grepl("saved_model\\.pb", model_files)))
})
test_succeeds("model can be exported to saved model format", {
if (!is_backend("tensorflow")) skip("not a tensorflow backend")
if (!tensorflow::tf_version() >= "1.14") skip("Needs TF >= 1.14")
if (tensorflow::tf_version() > "2.0") skip("Is deprecated in TF 2.1")
model <- define_and_compile_model()
data <- matrix(rexp(1000*784), nrow = 1000, ncol = 784)
labels <- matrix(round(runif(1000*10, min = 0, max = 9)), nrow = 1000, ncol = 10)
model %>% fit(data, labels, epochs = 2, verbose = 0)
model_dir <- tempfile()
dir.create(model_dir)
if (tensorflow::tf_version() == "2.0") {
expect_warning({
model_to_saved_model(model, model_dir)
loaded <- model_from_saved_model(model_dir)
})
} else {
model_to_saved_model(model, model_dir)
loaded <- model_from_saved_model(model_dir)
}
expect_equal(
predict(model, matrix(rep(1, 784), nrow = 1)),
predict(loaded, matrix(rep(1, 784), nrow = 1))
)
})
test_succeeds("model can be exported to saved model format using save_model_tf", {
if (!is_backend("tensorflow")) skip("not a tensorflow backend")
if (!tensorflow::tf_version() >= "2.0.0") skip("Needs TF >= 2.0")
model <- define_and_compile_model()
model_dir <- tempfile()
skip("save_model_tf")
s <- save_model_tf(model, model_dir)
loaded <- load_model_tf(model_dir)
expect_equal(
predict(model, matrix(rep(1, 784), nrow = 1)),
predict(loaded, matrix(rep(1, 784), nrow = 1))
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.