Nothing
if (compareVersion(paste0(version$major, ".", version$minor), "3.6") < 0) {
skip("Randomization algorithm has changed from R 3.6")
}
# Prepare corpus
library(quanteda)
library(magrittr)
if (!"dplyr" %in% rownames(installed.packages())) {
skip("dplyr is not installed")
}
data(data_corpus_inaugural, package = "quanteda")
data_corpus_inaugural <- head(data_corpus_inaugural, n = 58)
data_tokens <- tokens(
data_corpus_inaugural,
remove_numbers = TRUE,
remove_punct = TRUE,
remove_symbols = TRUE,
remove_separators = TRUE,
remove_url = TRUE
) %>%
tokens_tolower() %>%
tokens_remove(c(
stopwords("english"),
"may",
"shall",
"can",
"must",
"upon",
"with",
"without"
)) %>%
tokens_select(min_nchar = 3)
data_dfm <- dfm(data_tokens) %>%
dfm_trim(min_termfreq = 5, min_docfreq = 2)
# Read texts into keyATM
keyATM_docs <- keyATM_read(data_dfm)
keywords <- list(
Government = c("laws", "law", "executive"),
Congress = c("congress", "party"),
Peace = c("peace", "world", "freedom"),
Constitution = c("constitution", "rights"),
ForeignAffairs = c("foreign", "war")
)
# Create covariates
vars <- docvars(data_corpus_inaugural)
vars %>%
tibble::as_tibble() %>%
dplyr::mutate(
Period = dplyr::case_when(Year <= 1899 ~ "18_19c", TRUE ~ "20_21c")
) %>%
dplyr::mutate(
Party = dplyr::case_when(
Party == "Democratic" ~ "Democratic",
Party == "Republican" ~ "Republican",
TRUE ~ "Other"
)
) %>%
dplyr::select(Party, Period) -> vars_selected
# Set the base line
vars_selected %>%
dplyr::mutate(
Party = factor(Party, levels = c("Other", "Republican", "Democratic")),
Period = factor(Period, levels = c("18_19c", "20_21c"))
) -> vars_selected
out <- keyATM(
docs = keyATM_docs,
no_keyword_topics = 5,
keywords = keywords,
model = "covariates",
model_settings = list(
covariates_data = vars_selected,
covariates_formula = ~ Party + Period,
standardize = "all",
covariates_model = "DirMulti"
),
options = list(seed = 250, iterations = 20),
keep = c("Z", "S")
)
test_that("Covariates info", {
expect_output(mat <- covariates_info(out))
expect_type(mat, "double")
})
test_that("Covariates get", {
mat <- covariates_get(out)
expect_type(mat, "double")
expect_equivalent(dim(mat), c(58L, 4L))
expect_equivalent(
colnames(mat),
c("(Intercept)", "PartyRepublican", "PartyDemocratic", "Period20_21c")
)
})
test_that("Doc Topic", {
skip_on_cran()
strata_topic <- by_strata_DocTopic(
out,
by_var = "Period20_21c",
labels = c("18_19c", "20_21c"),
posterior_mean = TRUE,
method = "eti",
point = "median"
)
p <- plot(strata_topic, var_name = "Period", show_topic = c(1, 2, 3, 4))
expect_s3_class(p, "keyATM_fig")
skip_on_os("linux")
expect_equal(
summary(strata_topic)[[2]]$Point[1],
0.08544458,
tolerance = 0.000001
)
expect_equal(
summary(strata_topic)[[2]]$Upper[2],
0.136887,
tolerance = 0.000001
)
expect_equal(
summary(strata_topic)[[2]]$Lower[3],
0.2036373,
tolerance = 0.000001
)
})
test_that("Topic Word", {
skip_on_os("linux")
skip_on_cran()
strata_tw <- by_strata_TopicWord(
out,
keyATM_docs,
by = as.vector(vars_selected$Party)
)
top <- top_words(strata_tw, n = 3)
expect_equivalent(top$Democratic[1, 3], "world [\U2713]")
expect_equivalent(top$Republican[1, 5], "war [\U2713]")
expect_equivalent(top$Republican[3, 7], "american")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.