Description Usage Arguments Details Value Author(s) See Also Examples
This function runs a set of independence tests on a benchmark consisting of different functional dependence types (see generate.benchmark.data
)
1 |
fun |
function or character naming a function. A function should have two vectors of coordinates as first two arguments |
args |
list of additional arguments to the functions |
types |
numeric, which type of dependence to benchmark (see |
noises |
matrix of noise to add to each dependence. It should have |
size |
numeric, size of the data sets to generate (default 320 points) |
nsim |
numeric, how many replicate simulations to run under the null model and H1, default 500 |
... |
additional arguments to pass on to function |
This function makes use of mclapply
so MC_CORES
should be set to a number greater than 1 for parallelization
This function returns a list data structure that can be further processed with the functions of this package, calculate.power,generate.roc
Sebastian Dümcke duemcke@mpipz.mpg.de
calculate.power,generate.roc
, generate.benchmark.data
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | noises = cbind(lin=c(.1,.5,.8),circ=c(.2,.4,.6))
mycor = function(...) cor(...)^2
results.cor=run.tests(mycor,args=list(),types=c(1,7),noises=noises,nsim=50,size=100)
results = run.tests("novelTest.extreme",args=list(maxi=10),types=c(1,7),noises=noises,nsim=25,
size=100)
## Not run:
x11()
par(mfrow=c(1,ncol(noises)))
roc.plot(generate.roc(results,pval=FALSE),legend=noises)
## End(Not run)
power = t(drop(calculate.power(results,.95,`>`)))
power.cor = t(drop(calculate.power(results.cor,.95,`>`)))
#cor is excellent at linear relationships, not so much for circular relationships:
#(increasing power is an artifact of low number of simulation, increase nsim in run.tests)
power.plot(list(cor=power.cor, novelTest=power),noises,show.legend="topright",mains=c("Linear",
"Circle"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.