ise.mixt | R Documentation |
The global errors ISE (Integrated Squared Error), MISE (Mean Integrated Squared Error) and the AMISE (Asymptotic Mean Integrated Squared Error) for 1- to 6-dimensional data. Normal mixture densities have closed form expressions for the MISE and AMISE. So in these cases, we can numerically minimise these criteria to find MISE- and AMISE-optimal matrices.
Hamise.mixt(mus, Sigmas, props, samp, Hstart, deriv.order=0)
Hmise.mixt(mus, Sigmas, props, samp, Hstart, deriv.order=0)
Hamise.mixt.diag(mus, Sigmas, props, samp, Hstart, deriv.order=0)
Hmise.mixt.diag(mus, Sigmas, props, samp, Hstart, deriv.order=0)
hamise.mixt(mus, sigmas, props, samp, hstart, deriv.order=0)
hmise.mixt(mus, sigmas, props, samp, hstart, deriv.order=0)
amise.mixt(H, mus, Sigmas, props, samp, h, sigmas, deriv.order=0)
ise.mixt(x, H, mus, Sigmas, props, h, sigmas, deriv.order=0, binned=FALSE,
bgridsize)
mise.mixt(H, mus, Sigmas, props, samp, h, sigmas, deriv.order=0)
mus |
(stacked) matrix of mean vectors (>1-d), vector of means (1-d) |
Sigmas , sigmas |
(stacked) matrix of variance matrices (>1-d), vector of standard deviations (1-d) |
props |
vector of mixing proportions |
samp |
sample size |
Hstart , hstart |
initial bandwidth (matrix), used in numerical optimisation |
deriv.order |
derivative order |
x |
matrix of data values |
H , h |
bandwidth (matrix) |
binned |
flag for binned kernel estimation. Default is FALSE. |
bgridsize |
vector of binning grid sizes |
ISE is a random variable that depends on the data
x
. MISE and AMISE are non-random and don't
depend on the data. For normal mixture densities, ISE, MISE and AMISE
have exact formulas for all dimensions.
MISE- or AMISE-optimal bandwidth matrix. ISE, MISE or AMISE value.
Chacon J.E., Duong, T. & Wand, M.P. (2011). Asymptotics for general multivariate kernel density derivative estimators. Statistica Sinica, 21, 807-840.
x <- rmvnorm.mixt(100)
Hamise.mixt(samp=nrow(x), mus=rep(0,2), Sigmas=var(x), props=1, deriv.order=1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.