plot.kde.part | R Documentation |
Plot of partition for kernel density clustering for 2-dimensional data.
mvnorm.mixt.part(mus, Sigmas, props=1, xmin, xmax, gridsize, max.iter=100,
verbose=FALSE)
kms.part(x, H, xmin, xmax, gridsize, verbose=FALSE, ...)
## S3 method for class 'kde.part'
plot(x, display="filled.contour", col, col.fun, alpha=1, add=FALSE, ...)
mus |
(stacked) matrix of mean vectors |
Sigmas |
(stacked) matrix of variance matrices |
props |
vector of mixing proportions |
xmin , xmax |
vector of minimum/maximum values for grid |
gridsize |
vector of number of grid points |
max.iter |
maximum number of iterations |
verbose |
flag to print out progress information. Default is FALSE. |
x |
matrix of data values or an object of class |
H |
bandwidth matrix. If missing,
|
display |
type of display, "filled.contour" for filled contour plot |
col , col.fun |
vector of plotting colours or colour function |
alpha |
colour transparency. Default is 1. |
add |
flag to add to current plot. Default is FALSE. |
... |
other parameters |
For 2-d data, kms.part
and mvnorm.mixt.part
produce a
kde.part
object whose
values are the class labels, rather than probability density values.
A kernel partition is an object of class kde.part
which is a
list with fields:
x |
data points - same as input |
eval.points |
vector or list of points at which the estimate is evaluated |
estimate |
density estimate at |
H |
bandwidth matrix |
gridtype |
"linear" |
gridded |
flag for estimation on a grid |
binned |
flag for binned estimation |
names |
variable names |
w |
vector of weights |
cont |
vector of probability contour levels |
end.points |
matrix of final iterates starting from |
label |
vector of cluster labels |
mode |
matrix of cluster modes |
nclust |
number of clusters |
nclust.table |
frequency table of cluster labels |
tol.iter , tol.clust , min.clust.size |
tuning parameter values - same as input |
Plot is sent to graphics window.
plot.kde
, kms
## normal mixture partition
mus <- rbind(c(-1,0), c(1, 2/sqrt(3)), c(1,-2/sqrt(3)))
Sigmas <- 1/25*rbind(invvech(c(9, 63/10, 49/4)), invvech(c(9,0,49/4)), invvech(c(9,0,49/4)))
props <- c(3,3,1)/7
gridsize <- c(11,11) ## small gridsize illustrative purposes only
nmixt.part <- mvnorm.mixt.part(mus=mus, Sigmas=Sigmas, props=props, gridsize=gridsize)
plot(nmixt.part, asp=1, xlim=c(-3,3), ylim=c(-3,3), alpha=0.5)
## kernel mean shift partition
set.seed(81928192)
x <- rmvnorm.mixt(n=10000, mus=mus, Sigmas=Sigmas, props=props)
msize <- round(prod(gridsize)*0.1)
kms.nmixt.part <- kms.part(x=x, min.clust.size=msize, gridsize=gridsize)
plot(kms.nmixt.part, asp=1, xlim=c(-3,3), ylim=c(-3,3), alpha=0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.