| plot.kde | R Documentation |
Plot for kernel density estimate for 1- to 3-dimensional data.
## S3 method for class 'kde'
plot(x, ...)
x |
object of class |
... |
other graphics parameters:
|
For kde objects, the function headers for the different dimensional data are
## univariate
plot(fhat, xlab, ylab="Density function", add=FALSE, drawpoints=FALSE, col=1,
col.pt=4, col.cont=1, cont.lwd=1, jitter=FALSE, cont, abs.cont,
approx.cont=TRUE, alpha=1, ...)
## bivariate
plot(fhat, display="slice", cont=c(25,50,75), abs.cont, approx.cont=TRUE,
xlab, ylab, zlab="Density function", cex=1, pch=1, add=FALSE,
drawpoints=FALSE, drawlabels=TRUE, theta=-30, phi=40, d=4, col.pt=4,
col, col.fun, alpha=1, lwd=1, border=1, thin=3, kdde.flag=FALSE,
ticktype="detailed", ...)
## trivariate
plot(fhat, display="plot3D", cont=c(25,50,75), abs.cont, approx.cont=TRUE,
colors, col, col.fun, alphavec, size=3, cex=1, pch=1, theta=-30, phi=40,
d=4, ticktype="detailed", bty="f", col.pt=4, add=FALSE, xlab, ylab,
zlab, drawpoints=FALSE, alpha, box=TRUE, axes=TRUE, ...)
For 1-dimensional data, the plot is a standard plot of a 1-d curve. If
drawpoints=TRUE then a rug plot is added. If cont is specified,
the horizontal line on the x-axis indicates the cont% highest
density level set.
For 2-dimensional data, the different types of plotting displays are
controlled by the display parameter.
(a) If display="slice" then a slice/contour plot
is generated using contour.
(b) If display is "filled.contour"
then a filled contour plot is generated.
The default contours are at 25%, 50%, 75% or
cont=c(25,50,75) which are upper percentages of
highest density regions.
(c) If display="persp" then a perspective/wire-frame plot
is generated. The default z-axis limits zlim are the default
from the usual persp command.
(d) If display="image" then an image plot
is generated.
For 3-dimensional data, the plot is a series of nested
3-d contours. The default contours are cont=c(25,50,75). The
default opacity alphavec ranges from 0.1 to 0.5.
For ks \geq 1.12.0, base R graphics becomes the default plotting engine:
to create an rgl plot like in previous versions, set display="rgl".
To specify contours, either one of cont or abs.cont
is required. cont specifies upper percentages which
correspond to probability contour regions. If abs.cont is set
to particular values, then contours at these levels are drawn.
This second option is useful for plotting
multiple density estimates with common contour levels. See
contourLevels for details on computing contour levels.
If approx=FALSE, then the exact KDE is computed. Otherwise
it is interpolated from an existing KDE grid, which can dramatically
reduce computation time for large data sets.
If a colour function is specified in col.fun, it should have the number of colours as a single argument, e.g. function(n){hcl.colors(n, ...)}. The transparent background colour is automatically concatenated before this colour function. If col is specified, it overrides col.fun. There should be one more colour than the number of contours, i.e. background colour plus one for each contour.
Plots for 1-d and 2-d are sent to graphics window. Plot for 3-d is sent to graphics/RGL window.
## univariate example
data(iris)
fhat <- kde(x=iris[,2])
plot(fhat, cont=50, col.cont=4, cont.lwd=2, xlab="Sepal length")
## bivariate example
fhat <- kde(x=iris[,2:3])
plot(fhat, display="filled.contour", cont=seq(10,90,by=10), lwd=1, alpha=0.5)
plot(fhat, display="persp", border=1, alpha=0.5)
## trivariate example
fhat <- kde(x=iris[,2:4])
plot(fhat)
if (interactive()) plot(fhat, display="rgl")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.