Nothing
### Terrence D. Jorgensen
### Last updated: 7 March 2025
### generate imputed data set for documentation examples
# data(HolzingerSwineford1939, package = "lavaan")
# ## impose missing data for example
# HSMiss <- HolzingerSwineford1939[ , c(paste("x", 1:9, sep = ""),
# "ageyr","agemo","school")]
# set.seed(123)
# HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
# age <- HSMiss$ageyr + HSMiss$agemo/12
# HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)
# ## impute missing data with Amelia
# library(Amelia)
# set.seed(456)
# HS.amelia <- amelia(HSMiss, m = 20, noms = "school", p2s = FALSE)
# HS20imps <- HS.amelia$imputations
# save(HS20imps, file = "data/HS20imps.rda")
#
# ## ordered-categorical data
# HSbinary <- as.data.frame( lapply(HSMiss[ , paste0("x", 1:9)],
# FUN = cut, breaks = 2, labels = FALSE) )
# HSbinary$school <- HSMiss$school
#
# ## impute binary missing data using mice package
# library(mice)
# set.seed(456)
# miceImps <- mice(HSbinary)
# ## save imputations in a list of data.frames
# binHS5imps <- list()
# for (i in 1:miceImps$m) binHS5imps[[i]] <- complete(miceImps, action = i)
# save(binHS5imps, file = "data/binHS5imps.rda")
##' List of imputed Holzinger & Swineford (1939) datasets
##'
##' A version of the classic Holzinger and Swineford (1939) dataset, with
##' missing data imposed on variables `x5` and `x9`:
##'
##' - `x5` is missing not at random (MNAR) by deleting the lowest 30% of
##' `x5` values.
##' - `x9` is missing at random (MAR) conditional on age, by deleting `x5`
##' values for the youngest 30% of subjects in the data.
##'
##' The data are imputed 20 times using the syntax shown in the example.
##' The data include only age and school variables, along with 9 tests
##' (`x1` through `x9`).
##'
##' @source The {lavaan} package.
##'
##' @examples
##' \donttest{
##' data(HolzingerSwineford1939, package = "lavaan")
##'
##' ## impose missing data for example
##' HSMiss <- HolzingerSwineford1939[ , c(paste("x", 1:9, sep = ""),
##' "ageyr","agemo","school")]
##' set.seed(123)
##' HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
##' age <- HSMiss$ageyr + HSMiss$agemo/12
##' HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)
##'
##' ## impute missing data with Amelia
##' library(Amelia)
##' set.seed(456)
##' HS.amelia <- amelia(HSMiss, m = 20, noms = "school", p2s = FALSE)
##' HS20imps <- HS.amelia$imputations
##' }
##'
##' @name HS20imps
##' @docType data
##' @author Terrence D. Jorgensen (University of Amsterdam;
##' \email{TJorgensen314@@gmail.com})
##' @references
##' Holzinger, K., & Swineford, F. (1939).
##' *A study in factor analysis: The stability of a bifactor solution*.
##' Supplementary Educational Monograph, no. 48.
##' Chicago, IL: University of Chicago Press.
##' @seealso [lavaan::HolzingerSwineford1939]
##' @keywords data
NULL
##' List of imputed Holzinger & Swineford (1939) dichotomized data
##'
##' A version of the classic Holzinger and Swineford (1939) dataset, with
##' missing data imposed on variables `x5` and `x9`:
##'
##' - `x5` is missing not at random (MNAR) by deleting the lowest 30% of
##' `x5` values.
##' - `x9` is missing at random (MAR) conditional on age, by deleting `x9`
##' values for the youngest 30% of subjects in the data.
##'
##' The data are then dichotomized using a median split, and imputed 5 times
##' using the syntax shown in the example. The data include only the 9 tests
##' (`x1` through `x9`) and school.
##'
##' @source The {lavaan} package.
##'
##' @examples
##' \donttest{
##' data(HolzingerSwineford1939, package = "lavaan")
##'
##' ## impose missing data for example
##' HSMiss <- HolzingerSwineford1939[ , c(paste("x", 1:9, sep = ""),
##' "ageyr","agemo","school")]
##' set.seed(123)
##' HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
##' age <- HSMiss$ageyr + HSMiss$agemo/12
##' HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)
##'
##' ## median split
##' HSbinary <- as.data.frame( lapply(HSMiss[ , paste0("x", 1:9)],
##' FUN = cut, breaks = 2, labels = FALSE) )
##' HSbinary$school <- HSMiss$school
##'
##' ## impute binary missing data using mice package
##' library(mice)
##' set.seed(456)
##' miceImps <- mice(HSbinary)
##' ## save imputations in a list of data.frames
##' binHS5imps <- list()
##' for (i in 1:miceImps$m) binHS5imps[[i]] <- complete(miceImps, action = i)
##' }
##'
##' @name binHS5imps
##' @docType data
##' @author Terrence D. Jorgensen (University of Amsterdam;
##' \email{TJorgensen314@@gmail.com})
##' @references
##' Holzinger, K., & Swineford, F. (1939).
##' *A study in factor analysis: The stability of a bifactor solution*.
##' Supplementary Educational Monograph, no. 48.
##' Chicago, IL: University of Chicago Press.
##' @seealso [lavaan::HolzingerSwineford1939]
##' @keywords data
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.