Nothing
#' Test of Normality -- SJ Test
#'
#' Perform the robust directed test of normality, which is based on the ratio of the
#' classical standard deviation \eqn{S} to the robust standard deviation \eqn{J}
#' (Average Absolute Deviation from the Median, MAAD) of the sample data.
#' See \insertCite{Gel_etal_2007;textual}{lawstat}.
#'
#'
#' @param x a numeric vector of data values.
#' @param crit.values a character string specifying how the critical values should be
#' obtained, i.e., approximated by the \eqn{t}-distribution (default) or empirically.
#' @param N number of Monte Carlo simulations for the empirical critical values.
#'
#'
#' @return A list of class \code{"htest"} with the following components:
#' \item{statistic}{the standardized test statistic.}
#' \item{p.value}{the \eqn{p}-value.}
#' \item{parameter}{the ratio of the classical standard deviation \eqn{S} to
#' the robust standard deviation \eqn{J}.}
#' \item{data.name}{a character string giving the name of the data.}
#'
#' @references
#' \insertAllCited{}
#'
#' @seealso \code{\link{rqq}}, \code{\link{rjb.test}},
#' \code{\link[tseries]{jarque.bera.test}}
#'
#' @keywords distribution htest robust
#'
#' @author Wallace Hui, Yulia R. Gel, Joseph L. Gastwirth, Weiwen Miao
#'
#' @export
#' @examples
#' data(bias)
#' sj.test(bias)
#'
sj.test <- function(x,
crit.values = c("t.approximation", "empirical"),
N = 0)
{
crit.values = match.arg(crit.values)
if ((crit.values == "empirical") & (N == 0)) {
stop("number of Monte Carlo simulations N should be provided for the empirical critical values")
}
### SJ Test - New Directional Test
DNAME = deparse(substitute(x))
n <- length(x)
J <- sqrt(pi / 2) * mean(abs(x - median(x)))
x <- sort(x)
cw1 <- sd(x) / J
statistic = sqrt(n) * (cw1 - 1) / sqrt((pi - 3) / 2)
if (crit.values == "empirical") {
#### computes empirical critical values for the SJ statistic####
sj <- double(N)
for (k in 1:N) {
e <- rnorm(length(x), mean = 0, sd = sqrt(1))
J <- sqrt(pi / 2) * mean(abs(e - median(e)))
sj[k] <- sd(e) / J
}
y <- sort(sj)
if (cw1 >= max(y)) {
p.value = 0
} else if (cw1 <= min(y)) {
p.value = 1
} else {
bn <- which(y == min(y[I(y >= cw1)]))
an <- which(y == max(y[I(y < cw1)]))
a <- max(y[I(y < cw1)])
b <- min(y[I(y >= cw1)])
pa <- (an - 1) / (N - 1)
pb <- (bn - 1) / (N - 1)
alpha <- (cw1 - a) / (b - a)
p.value = 1 - alpha * pb - (1 - alpha) * pa
}
} else if (crit.values == "t.approximation") {
p.value = 1 - pt(statistic, df = (sqrt(n) + 3) / 2)
}
METHOD = "Test of Normality - SJ Test"
### Display Output ###
STATISTIC = statistic
names(STATISTIC) = "Standardized SJ Statistic"
PARAMETER = cw1
names(PARAMETER) = "ratio of S to J"
structure(
list(
statistic = STATISTIC,
parameter = PARAMETER,
p.value = p.value,
method = METHOD,
data.name = DNAME
),
class = "htest"
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.