R/bootstrap_lme4.R

Defines functions reb_bootstrap.lmerMod wild_bootstrap.lmerMod resid_bootstrap.merMod case_bootstrap.merMod parametric_bootstrap.merMod bootstrap.merMod

Documented in bootstrap.merMod case_bootstrap.merMod parametric_bootstrap.merMod reb_bootstrap.lmerMod resid_bootstrap.merMod wild_bootstrap.lmerMod

#' @rdname bootstrap
#' @export
#' @method bootstrap merMod
#' @importFrom stats as.formula cov formula model.matrix na.exclude 
#' na.omit predict resid simulate sd confint quantile
bootstrap.merMod <- function(model, .f = extract_parameters, type, B, resample, 
                             reb_type, hccme, 
                             aux.dist, orig_data = NULL, .refit = TRUE){
  switch(type,
         parametric = parametric_bootstrap.merMod(model, .f, B, .refit),
         residual = resid_bootstrap.merMod(model, .f, B, .refit),
         case = case_bootstrap.merMod(model, .f, B, resample, orig_data, .refit),
         reb = reb_bootstrap.lmerMod(model, .f, B, reb_type, .refit),
         wild = wild_bootstrap.lmerMod(model, .f, B, hccme, aux.dist, .refit))
}


#' @rdname parametric_bootstrap
#' @export
#' @method parametric_bootstrap merMod
parametric_bootstrap.merMod <- function(model, .f, B, .refit = TRUE){
  if(.refit) .f <- match.fun(.f)
  
  # model.fixef <- lme4::fixef(model) # Extract fixed effects
  ystar <- simulate(model, nsim = B, na.action = na.exclude)
  
  if(!.refit) return(ystar)
  
  # refit here
  refits <- refit_merMod(ystar, model, .f)
  
  .bootstrap.completion(model, tstar = refits$tstar, B, .f, type = "parametric", warnings = refits$warnings)
}


#' @rdname case_bootstrap
#' @export
#' @method case_bootstrap merMod
case_bootstrap.merMod <- function(model, .f, B, resample, orig_data = NULL, .refit = TRUE){
  
  if(!is.null(orig_data)){
    data <- orig_data
  }else{
    data <- model@frame
  }
  
  flist <- lme4::getME(model, "flist")
  re_names <- names(flist)
  clusters <- c(rev(re_names), ".id")
  
  if(length(clusters) != length(resample))
    stop("'resample' is not the same length as the number of grouping variables. 
         Please specify whether to resample the data at each level of grouping,
         including at the observation level.")
  
  if(!all(re_names %in% colnames(data))) {
    missing_re <- setdiff(re_names, colnames(data))
    data <- dplyr::bind_cols(data, flist[missing_re])
  }
  
  
  # rep.data <- purrr::map(integer(B), function(x) .cases.resamp(model = model, dat = data, cluster = clusters, resample = resample))
  tstar <- purrr::map(integer(B), function(x) .resample_refit.cases(model = model, .f = .f, dat = data, cluster = clusters, resample = resample, .refit = .refit))
  
  if(!.refit) return(tstar)
  
  warnings <- collect_warnings(tstar)
  
  # tstar <- bind_rows(refits)
  
  # tstar <- purrr::map(refits, ~.x$value)
  # warnings <- list(
  #   warning = lapply(tstar, function(.x) attr(.x, "factory-warning")),
  #   message = lapply(tstar, function(.x) attr(.x, "factory-message")),
  #   error   = lapply(tstar, function(.x) attr(.x, "factory-error"))
  # )
  
  .bootstrap.completion(model, tstar = tstar, B, .f, type = "case", warnings = warnings)
}



#' @rdname resid_bootstrap
#' @export
#' @method resid_bootstrap merMod
resid_bootstrap.merMod <- function(model, .f, B, .refit = TRUE){
  
  if(.refit) .f <- match.fun(.f)
  
  glmm <- lme4::isGLMM(model)
  
  setup <- .setup(model, type = "residual")
  
  ystar <- as.data.frame(
    replicate(
      n = B, 
      .resample.cgr(
        glmm = glmm,
        b = setup$b, 
        e = setup$e, 
        level.num = setup$level.num, 
        Ztlist = setup$Ztlist, 
        Xbeta = setup$Xbeta,
        vclist = setup$vclist,
        sig0 = setup$sig0,
        invlink = ifelse(glmm, model@resp$family$linkinv, NULL)
      )
    )
  )
  
  if(glmm){
    fam <- stats::family(model)
    wts <- stats::weights(model)
    
    # simulate y
    simfun <- simfunList[[fam$family]]
    ystar <- purrr::map(ystar,
      ~simfun(model, nsim = 1, ftd = .x, wts = wts)
    )
      
  }
  
  if(!.refit) return(ystar)
  
  refits <- refit_merMod(ystar, model, .f)
  
  .bootstrap.completion(model, tstar = refits$tstar, B, .f, type = "residual", warnings = refits$warnings)
}


#' @rdname wild_bootstrap
#' @export
#' @method wild_bootstrap lmerMod
wild_bootstrap.lmerMod <- function(model, .f, B, hccme = c("hc2", "hc3"), 
                                   aux.dist = c("mammen", "rademacher",
                                                "norm", "webb", "gamma"),
                                   .refit = TRUE){
  
  .f <- match.fun(.f)
  hccme <- match.arg(hccme)
  aux.dist <- match.arg(aux.dist)
  
  setup <- .setup(model, type = "wild")
  
  ystar <- as.data.frame(
    replicate(
      n = B, 
      .resample.wild(
        Xbeta = setup$Xbeta, 
        mresid = setup$mresid, 
        .hatvalues = setup$.hatvalues, 
        hccme = hccme, 
        aux.dist = aux.dist,
        n.lev = setup$n.lev,
        flist = setup$flist
      )
    )
  )
  
  if(!.refit) return(ystar)
  
  
  refits <- refit_merMod(ystar, model, .f)
  
  .bootstrap.completion(model, tstar = refits$tstar, B, .f, type = "wild", warnings = refits$warnings)
}




#' @rdname reb_bootstrap
#' @export
#' @method reb_bootstrap lmerMod
reb_bootstrap.lmerMod <- function(model, .f, B, reb_type, .refit = TRUE){
  
  if(missing(reb_type)){
    reb_type <- 0
    warning("'reb_type' unspecified, performing REB 0 bootstrap")
  }
  
  if(lme4::getME(object = model, name = "n_rfacs") > 1) {
    stop("The REB bootstrap has not been adapted for 3+ level models.")
  }
  
  if(!.refit & reb_type == 2) {
    stop(".refit == FALSE is not available with reb_type = 2.")
  }
  
  .f <- match.fun(.f)
  
  # Set up for bootstrapping
  setup <- .setup(model, type = "reb", reb_type = reb_type)
  
  # Generate bootstrap responses
  y.star <- replicate(
    n = B, 
    .resample.reb(
      Xbeta = setup$Xbeta, 
      Ztlist = setup$Ztlist, 
      Uhat = setup$b, 
      estar.vec = as.numeric(setup$e), 
      flist = setup$flist, 
      levs = setup$levs
    )
  )
  
  ystar <- as.data.frame(y.star)
  
  if(!.refit) return(ystar)
  
  # Extract bootstrap statistics
  if(reb_type == 2) .f <- extract_parameters.merMod
  
  refits <- refit_merMod(ystar, model, .f)
  tstar <- refits$tstar
  # Extract original statistics
  t0 <- .f(model)
  
  # Postprocessing for REB/2
  if(reb_type == 2) 
    tstar <- .postprocess.reb2(t0, tstar, nbeta = length(lme4::getME(model, "beta")), B = B)
  
  # Format for return
  .bootstrap.completion(model, tstar = tstar, B, .f, 
                        type = paste("reb", reb_type, sep = ""), 
                        warnings = refits$warnings)
  
}

Try the lmeresampler package in your browser

Any scripts or data that you put into this service are public.

lmeresampler documentation built on April 30, 2022, 1:06 a.m.