Nothing
print.summary.boot.lmf <-
function(x,
digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"),
...)
{
#Title
cat("\nESTIMATING FLUCTUATING SELECTION IN AGE-STRUCTURED POPULATIONS\n",
sep = "")
#Display number of bootstraps
cat(sprintf(ngettext(x$nboot, "%s Bootstrap replicate generated\n",
"%s Bootstrap replicates generated\n"), paste(x$nboot)), sep = "")
#Display call
cat("\nCall:\n", paste(deparse(x$call), sep = "\n", collapse = "\n"),
"\n\n", sep = "")
#Header
cat("BOOTSTRAP SUMMARY STATISTICS:\n\n")
#Print transition matrix and associated components
if(!is.null(x$lest))
{
#Projection matrix
cat("Projection matrix (l):\n")
cat("-estimate:\n")
print.default(format(x$lest, digits = digits), print.gap = 2,
quote = FALSE)
cat("\n")
cat("-bias (estimate - bootstrap mean):\n")
print.default(format(x$lbias, digits = digits), print.gap = 2,
quote = FALSE)
cat("\n")
cat("-bootstrap mean:\n")
print.default(format(x$lboot.mean, digits = digits), print.gap = 2,
quote = FALSE)
cat("\n")
cat("-bootstrap st.dev.:\n")
print.default(format(x$lboot.sd, digits = digits), print.gap = 2,
quote = FALSE)
cat("\n")
#Lambda, u and v
cat("Lambda, stable age dist.(u) and reprod. values(v):\n")
print.default(format(x$luv, digits = digits),
print.gap = 2, quote = FALSE)
cat("\n")
}
#Print the remaining parameters (all related to the alpha estimates)
if(!is.null(x$sigma2.e) & x$call$what != "H0")
{
#Print variance components
cat("Variance components:\n")
#Environmental
#Normal
cat(" Environmental\n")
print.data.frame(format(x$sigma2.e, digits = digits),
print.gap = 2, quote = FALSE, row.names = FALSE)
#Demographic
cat(" Demographic\n")
print.data.frame(format(x$sigma2.dd, digits = digits),
print.gap = 2, quote = FALSE, row.names = FALSE)
cat("\n")
#Print alphas (aM) - Fluctuating selection
cat("Temporal mean alpha (a(M)):\n")
print.default(format(x$aM, digits = digits), print.gap = 2,
quote = FALSE)
cat("\n")
#Print alphas covariance matrix (M) - Fluctuating selection
cat("Temporal covariance matrix (M):\n")
cat("-estimate:\n")
print.default(format(x$Mest, digits = digits),
print.gap = 2, quote = FALSE)
cat("\n")
cat("-bias (estimate - bootstrap mean):\n")
print.default(format(x$Mbias, digits = digits),
print.gap = 2, quote = FALSE)
cat("\n")
cat("-bootstrap mean:\n")
print.default(format(x$Mboot.mean, digits = digits),
print.gap = 2, quote = FALSE)
cat("\n")
cat("-bootstrap st.dev.:\n")
print.default(format(x$Mboot.sd, digits = digits),
print.gap = 2, quote = FALSE)
cat("\n")
#Print alphas (a(M=0)) - No fluctuating selection
cat("Temporal alpha estimates assuming no fluct. selection (a(M=0)):\n")
print.default(format(x$anf, digits = digits), print.gap = 2,
quote = FALSE)
cat("\n")
#Print alphas covariance matrix (A) - No fluctuating selection
cat("Covariance matrix assuming no fluct. selection (A):\n")
cat("-estimate:\n")
print.default(format(x$Anfest, digits = digits),
print.gap = 2, quote = FALSE)
cat("\n")
cat("-bias (estimate - bootstrap mean):\n")
print.default(format(x$Anfbias, digits = digits),
print.gap = 2, quote = FALSE)
cat("\n")
cat("-bootstrap mean:\n")
print.default(format(x$Anfboot.mean, digits = digits),
print.gap = 2, quote = FALSE)
cat("\n")
cat("-bootstrap st.dev.:\n")
print.default(format(x$Anfboot.sd, digits = digits),
print.gap = 2, quote = FALSE)
cat("\n")
}
#Print tests of significance
if(length(x$coefficients.H0aMboot[, 1]) |
length(x$coefficients.H0anfboot[, 1]) |
length(x$coefficients.H0Mnfboot[, 1]))
{
cat("TESTS OF SIGNIFICANCE:\n")
#Print tests of significance for alpha under fluctuating selection
#H0: a=0|M
if(length(x$coefficients.H0aMboot[, 1]))
{
cat("Test of directional selection under fluctuating selection (H0: a=[H0exp]|M):\n")
printCoefmat(x$coefficients.H0aMboot, digits = digits, signif.stars = signif.stars,
na.print = "NA", ...)
cat("\n")
}
#Print tests of significance for alpha under no fluctuating selection
#H0: a=0|M=0
if(length(x$coefficients.H0anfboot[, 1]))
{
cat("Test of directional selection assuming no fluctuating selection (H0: a=[H0exp]|M=0):\n")
printCoefmat(x$coefficients.H0anfboot, digits = digits, signif.stars = signif.stars,
na.print = "NA", ...)
cat("\n")
}
#Print tests of significance for alpha covariance matrix under the
#assumption of directional selection and no fluctuating selection
#H0: M=0|a
if(length(x$coefficients.H0Mnfboot[, 1]))
{
cat("Test of fluctuating selection under directional selection (H0: M=[H0exp]|a):\n")
printCoefmat(x$coefficients.H0Mnfboot, digits = digits, signif.stars = signif.stars,
na.print = "NA", ...)
cat("\n")
}
}
#Print bootstraps in a clear way if desired
if(!is.null(x$lluvboot) & x$call$what != "H0")
{
#Print bootstrapped l, lambda, u and v
cat("Boostrap replicates of projection matrix (l), lambda, u and v:\n")
print.data.frame(format(as.data.frame(x$lluvboot), digits = digits), print.gap = 2,
quote = FALSE, row.names = FALSE)
cat("\n")
}
if(!is.null(x$deboot) & x$call$what != "H0")
{
#Print bootstrapped sigma2.dj, sigma2.d and sigma2.e
cat("Boostrap replicates of demograpic and environmeltal variances:\n")
print.data.frame(format(as.data.frame(x$deboot), digits = digits), print.gap = 2,
quote = FALSE, row.names = FALSE)
cat("\n")
#Print bootstrapped at and At
cat("Boostrap replicates of yearly alphas (at) and covariance matrices (At):\n")
print.data.frame(format(as.data.frame(x$atAboot), digits = digits), print.gap = 2,
quote = FALSE, row.names = FALSE)
cat("\n")
#Print bootstrapped aM and M
cat("Boostrap replicates of temporal alpha (a(M)) and covariance matrix (M):\n")
print.data.frame(format(as.data.frame(x$aMMboot), digits = digits), print.gap = 2,
quote = FALSE, row.names = FALSE)
cat("\n")
#Print bootstrapped atC
cat("Boostrap replicates of yearly alphas corrected for sampling error (atC):\n")
print.data.frame(format(as.data.frame(x$atCboot), digits = digits), print.gap = 2,
quote = FALSE, row.names = FALSE)
cat("\n")
#Print bootstrapped anf and Anf
cat("Boostrap replicates of temporal alpha (a(M=0)) and covariance matrix (A) assuming no fluct. selection:\n")
print.data.frame(format(as.data.frame(x$anfAboot), digits = digits), print.gap = 2,
quote = FALSE, row.names = FALSE)
cat("\n")
}
#The following prints bootstraps under a null hypothesis
if(!is.null(x$H0aMboot))
{
#Print bootstrapped alphas under the null hypothesis given M != 0
cat("Boostrap replicates of temporal alpha (a(M)) under the null hypothesis:\n")
print.data.frame(format(as.data.frame(x$H0aMboot), digits = digits), print.gap = 2,
quote = FALSE, row.names = FALSE)
cat("\n")
}
if(!is.null(x$H0anfboot))
{
#Print bootstrapped alphas under the null hypothesis given M != 0
cat("Boostrap replicates of temporal alpha (a(M=0)) under the null hypothesis:\n")
print.data.frame(format(as.data.frame(x$H0anfboot), digits = digits), print.gap = 2,
quote = FALSE, row.names = FALSE)
cat("\n")
}
if(!is.null(x$H0atnfboot))
{
#Print bootstrapped yearly alphas under the null hypothesis given M = 0
cat("Boostrap replicates of yearly alpha (at|a(M=0)) under the null hypothesis:\n")
print.data.frame(format(as.data.frame(x$H0atnfboot), digits = digits), print.gap = 2,
quote = FALSE, row.names = FALSE)
cat("\n")
#Print bootstrapped M under the null hypothesis given M = 0
cat("Boostrap replicates of temporal covariance matrix (M|a) under the null hypothesis:\n")
print.data.frame(format(as.data.frame(x$H0Mnfboot), digits = digits), print.gap = 2,
quote = FALSE, row.names = FALSE)
cat("\n")
}
#End of print
cat("-End-\n")
#Return 'x' invisibly
invisible(x)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.