Description Usage Arguments Examples
View source: R/convexLogisticPCA.R
Predict Convex Logistic PCA scores or reconstruction on new data
1 2 3 |
object |
convex logistic PCA object |
newdata |
matrix with all binary entries. If missing, will use the
data that |
type |
the type of fitting required. |
... |
Additional arguments |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | # construct a low rank matrices in the logit scale
rows = 100
cols = 10
set.seed(1)
loadings = rnorm(cols)
mat_logit = outer(rnorm(rows), loadings)
mat_logit_new = outer(rnorm(rows), loadings)
# convert to a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
mat_new = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit_new)) * 1.0
# run logistic PCA on it
clpca = convexLogisticPCA(mat, k = 1, m = 4, main_effects = FALSE)
PCs = predict(clpca, mat_new)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.