Description Usage Arguments Details Examples
Predict Logistic SVD left singular values or reconstruction on new data
| 1 2 3 4 | 
| object | logistic SVD object | 
| newdata | matrix with all binary entries. If missing, will use the 
data that  | 
| quiet | logical; whether the calculation should give feedback | 
| max_iters | number of maximum iterations | 
| conv_criteria | convergence criteria. The difference between average deviance in successive iterations | 
| random_start | logical; whether to randomly inititalize the parameters. If  | 
| start_A | starting value for the left singular vectors | 
| type | the type of fitting required.  | 
| ... | Additional arguments | 
Minimizes binomial deviance for new data by finding the optimal left singular vector
matrix (A), given B and mu. Assumes the columns of the right 
singular vector matrix (B) are orthonormal.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | # construct a low rank matrices in the logit scale
rows = 100
cols = 10
set.seed(1)
loadings = rnorm(cols)
mat_logit = outer(rnorm(rows), loadings)
mat_logit_new = outer(rnorm(rows), loadings)
# convert to a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
mat_new = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit_new)) * 1.0
# run logistic PCA on it
lsvd = logisticSVD(mat, k = 1, main_effects = FALSE, partial_decomp = FALSE)
A_new = predict(lsvd, mat_new)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.