predict.lpca: Predict Logistic PCA scores or reconstruction on new data

Description Usage Arguments Examples

View source: R/logisticPCA.R

Description

Predict Logistic PCA scores or reconstruction on new data

Usage

1
2
3
## S3 method for class 'lpca'
predict(object, newdata, type = c("PCs", "link", "response"),
  ...)

Arguments

object

logistic PCA object

newdata

matrix with all binary entries. If missing, will use the data that object was fit on

type

the type of fitting required. type = "PCs" gives the PC scores, type = "link" gives matrix on the logit scale and type = "response" gives matrix on the probability scale

...

Additional arguments

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
# construct a low rank matrices in the logit scale
rows = 100
cols = 10
set.seed(1)
loadings = rnorm(cols)
mat_logit = outer(rnorm(rows), loadings)
mat_logit_new = outer(rnorm(rows), loadings)

# convert to a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
mat_new = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit_new)) * 1.0

# run logistic PCA on it
lpca = logisticPCA(mat, k = 1, m = 4, main_effects = FALSE)

PCs = predict(lpca, mat_new)

logisticPCA documentation built on May 1, 2019, 10:12 p.m.