Description Usage Arguments Details Value Functions References Examples
Estimate the parameters of the lognormal approximation to the sum
Estimate the parameters of the lognormal approximation to the sum
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | estimateSumLognormalSample(
mu,
sigma,
resLog,
effAcf = computeEffectiveAutoCorr(resLog),
isGapFilled = logical(0),
na.rm = TRUE
)
estimateSumLognormalSampleExpScale(mean, sigmaOrig, ...)
estimateSumLognormal(
mu,
sigma,
effAcf = c(),
corr = Diagonal(length(mu)),
corrLength = if (inherits(corr, "ddiMatrix")) 0 else nTerm,
sigmaSum = numeric(0),
isStopOnNoTerm = FALSE,
na.rm = isStopOnNoTerm
)
|
mu |
numeric vector of center parameters of terms at log scale |
sigma |
numeric vector of scale parameter of terms at log scale |
resLog |
time series of model-residuals at log scale to estimate correlation |
effAcf |
numeric vector of effective autocorrelation
This overrides arguments |
isGapFilled |
logical vector whether entry is gap-filled rather than an original measurement, see details |
na.rm |
neglect terms with NA values in mu or sigma |
mean |
numeric vector of expected values |
sigmaOrig |
numeric vector of standard deviation at original scale |
... |
further arguments passed to |
corr |
numeric matrix of correlations between the random variables |
corrLength |
integer scalar: set correlation length to smaller values to speed up computation by neglecting correlations among terms further apart. Set to zero to omit correlations. |
sigmaSum |
numeric scalar: possibility to specify a precomputed scale parameter instead of computing it. |
isStopOnNoTerm |
if no finite estimate is provided then by default NA is returned for the sum. Set this to TRUE to issue an error instead. |
If there are no gap-filled values, i.e. all(!isGapFilled) or
!length(isGapFilled) (the default), distribution parameters
are estimated using all the samples. Otherwise, the scale parameter
(uncertainty) is first estimated using only the non-gapfilled records.
Also use isGapFilled == TRUE for records, where sigma cannot be trusted. When setting sigma to missing, this is also affecting the expected value.
If there are only gap-filled records, assume uncertainty to be (before v0.1.5: the largest uncertainty of given gap-filled records.) the mean of the given multiplicative standard deviation
numeric vector with components mu, sigma,
and nEff,
i.e. the parameters of the lognormal distribution at log scale
and the number of effective observations.
estimateSumLognormalSample: In addition to estimateSumLognormal take care of missing values
and estimate correlation terms.
estimateSumLognormalSampleExpScale: Before calling estimateSumLognormalSample estimate
lognormal parameters from value and its uncertainty given
on original scale.
estimateSumLognormal: Estimate the parameters of the lognormal approximation to the sum
Lo C (2013) WKB approximation for the sum of two
correlated lognormal random variables.
Applied Mathematical Sciences, Hikari, Ltd., 7 , 6355-6367
10.12988/ams.2013.39511
1 2 3 4 5 6 7 8 9 10 11 12 13 | # distribution of the sum of two lognormally distributed random variables
mu1 = log(110)
mu2 = log(100)
sigma1 = log(1.2)
sigma2 = log(1.6)
(coefSum <- estimateSumLognormal(
c(mu1,mu2), c(sigma1,sigma2) ))
# repeat with correlation
(coefSumCor <- estimateSumLognormal(
c(mu1,mu2), c(sigma1,sigma2), effAcf = c(1,0.9) ))
# expected value is equal, but variance with correlated variables is larger
getLognormMoments(coefSum["mu"],coefSum["sigma"])
getLognormMoments(coefSumCor["mu"],coefSumCor["sigma"])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.