Description Usage Arguments Details Value Functions References Examples
Estimate the parameters of the lognormal approximation to the sum
Estimate the parameters of the lognormal approximation to the sum
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | estimateSumLognormalSample(
mu,
sigma,
resLog,
effAcf = computeEffectiveAutoCorr(resLog),
isGapFilled = logical(0),
na.rm = TRUE
)
estimateSumLognormalSampleExpScale(mean, sigmaOrig, ...)
estimateSumLognormal(
mu,
sigma,
effAcf = c(),
corr = Diagonal(length(mu)),
corrLength = if (inherits(corr, "ddiMatrix")) 0 else nTerm,
sigmaSum = numeric(0),
isStopOnNoTerm = FALSE,
na.rm = isStopOnNoTerm
)
|
mu |
numeric vector of center parameters of terms at log scale |
sigma |
numeric vector of scale parameter of terms at log scale |
resLog |
time series of model-residuals at log scale to estimate correlation |
effAcf |
numeric vector of effective autocorrelation
This overrides arguments |
isGapFilled |
logical vector whether entry is gap-filled rather than an original measurement, see details |
na.rm |
neglect terms with NA values in mu or sigma |
mean |
numeric vector of expected values |
sigmaOrig |
numeric vector of standard deviation at original scale |
... |
further arguments passed to |
corr |
numeric matrix of correlations between the random variables |
corrLength |
integer scalar: set correlation length to smaller values to speed up computation by neglecting correlations among terms further apart. Set to zero to omit correlations. |
sigmaSum |
numeric scalar: possibility to specify a precomputed scale parameter instead of computing it. |
isStopOnNoTerm |
if no finite estimate is provided then by default NA is returned for the sum. Set this to TRUE to issue an error instead. |
If there are no gap-filled values, i.e. all(!isGapFilled)
or
!length(isGapFilled)
(the default), distribution parameters
are estimated using all the samples. Otherwise, the scale parameter
(uncertainty) is first estimated using only the non-gapfilled records.
Also use isGapFilled == TRUE for records, where sigma cannot be trusted. When setting sigma to missing, this is also affecting the expected value.
If there are only gap-filled records, assume uncertainty to be (before v0.1.5: the largest uncertainty of given gap-filled records.) the mean of the given multiplicative standard deviation
numeric vector with components mu
, sigma
,
and nEff
,
i.e. the parameters of the lognormal distribution at log scale
and the number of effective observations.
estimateSumLognormalSample
: In addition to estimateSumLognormal
take care of missing values
and estimate correlation terms.
estimateSumLognormalSampleExpScale
: Before calling estimateSumLognormalSample
estimate
lognormal parameters from value and its uncertainty given
on original scale.
estimateSumLognormal
: Estimate the parameters of the lognormal approximation to the sum
Lo C (2013) WKB approximation for the sum of two
correlated lognormal random variables.
Applied Mathematical Sciences, Hikari, Ltd., 7 , 6355-6367
10.12988/ams.2013.39511
1 2 3 4 5 6 7 8 9 10 11 12 13 | # distribution of the sum of two lognormally distributed random variables
mu1 = log(110)
mu2 = log(100)
sigma1 = log(1.2)
sigma2 = log(1.6)
(coefSum <- estimateSumLognormal(
c(mu1,mu2), c(sigma1,sigma2) ))
# repeat with correlation
(coefSumCor <- estimateSumLognormal(
c(mu1,mu2), c(sigma1,sigma2), effAcf = c(1,0.9) ))
# expected value is equal, but variance with correlated variables is larger
getLognormMoments(coefSum["mu"],coefSum["sigma"])
getLognormMoments(coefSumCor["mu"],coefSumCor["sigma"])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.