Description Usage Arguments Value Functions References See Also Examples
Compute summary statistics of a log-normal distribution
1 2 3 4 5 | getLognormMoments(mu, sigma, m = exp(mu + sigma2/2) - shift, shift = 0)
getLognormMedian(mu, sigma, shift = 0)
getLognormMode(mu, sigma, shift = 0)
|
mu |
numeric vector: location parameter |
sigma |
numeric vector: scale parameter |
m |
mean at original scale, may override default based on mu |
shift |
shift for the shifted lognormal distribution |
for getLognormMoments
a numeric matrix with columns
mean
(expected value at original scale)
, var
(variance at original scale)
, and cv
(coefficient of variation: sqrt(var)/mean).
For the other functions a numeric vector of the required summary.
getLognormMoments
: get the expected value, variance, and coefficient of variation
getLognormMedian
: get the median
getLognormMode
: get the mode
Limpert E, Stahel W & Abbt M (2001)
Log-normal Distributions across the Sciences: Keys and Clues.
Oxford University Press (OUP) 51, 341,
10.1641/0006-3568(2001)051[0341:lndats]2.0.co;2
scaleLogToOrig
1 2 3 4 5 6 7 8 9 10 11 | # start by estimating lognormal parameters from moments
.mean <- 1
.var <- c(1.3,2)^2
parms <- getParmsLognormForMoments(.mean, .var)
#
# computed moments must equal previous ones
(ans <- getLognormMoments(parms[,"mu"], parms[,"sigma"]))
cbind(.var, ans[,"var"])
#
getLognormMedian(mu = log(1), sigma = log(2))
getLognormMode(mu = log(1), sigma = c(log(1.2),log(2)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.