Nothing
lp.transport <- function (cost.mat, direction = "min", row.signs, row.rhs, col.signs,
col.rhs, presolve = 0, compute.sens = 0, integers = 1:(nc * nr))
{
#
# lp.transport: use lpsolve.dll to solve a transportation problem.
# This is a linear program with an ixj matrix of decision variables,
# and constraints on the row and column sums (and no others)
#
# Arguments: cost.mat: matrix or data.frame of costs
# dir: direction ("min" or "max")
# row.signs: signs for row constraints
# row.rhs: values for row constraints
# col.signs: signs for column constraints
# col.rhs: values for column constraints
# presolve: Numeric: should we presolve? Default 0 (no); non-0
# values means "yes." Currently mostly ignored.
# compute.sens: Numeric: compute sensitivities? Default 0 (no);
# non-zero value means "yes."
# integers: Indicator of integer variables: default, all.
#
# Return value: list from lpsolve, including objective and optimal values.
#
# Check that the cost matrix is in fact a matrix; convert
# from data.frame if needed.
#
if (!is.matrix(cost.mat))
stop("Matrix of costs required.")
if (is.data.frame(cost.mat))
cost.mat <- as.matrix(cost.mat)
#
# Set up the stuff.
#
nr <- nrow(cost.mat)
nc <- ncol(cost.mat)
#
# Ensure that row stuff is of the correct size.
#
if (is.matrix(row.signs))
row.signs <- as.vector(row.signs)
if (length(row.signs) != nr)
stop(paste("Error: We have", length(row.signs), "signs, but",
nr, "rows"))
if (is.matrix(row.rhs))
row.rhs <- as.vector(row.rhs)
if (length(row.rhs) != nr)
stop(paste("Error: We have", length(row.rhs), "rhs's, but",
nr, "rows"))
#
# Ensure that col stuff is of the correct size.
#
if (is.matrix(col.signs))
col.signs <- as.vector(col.signs)
if (length(col.signs) != nc)
stop(paste("Error: We have", length(col.signs), "signs, but",
nc, "columns"))
if (is.matrix(col.rhs))
col.rhs <- as.vector(col.rhs)
if (length(col.rhs) != nc)
stop(paste("Error: We have", length(col.rhs), "rhs's, but",
nc, "rows"))
if (direction == "min")
direction <- as.integer(0)
else
if (direction == "max")
direction <- as.integer(1)
else
stop ("Direction should be 'min' or 'max'")
varcount <- as.integer(nr * nc) # no of vars
objective <- as.double(c(0, c(t(cost.mat))))
if (is.null (integers)) {
int.count <- 0
integers <- 0
}
else
int.count <- length(integers)
const.count <- as.integer(nr + nc) # no of constraints
rnum.signs <- rep(-1, nr) # sign holder
#
# Set the signs: <, >, = turn into 1,2,3 respectively. We also
# allow those followed by another "=". Anything else is an error.
#
rnum.signs[row.signs == "<" | row.signs == "<="] <- 1
rnum.signs[row.signs == "=" | row.signs == "=="] <- 3
rnum.signs[row.signs == ">" | row.signs == ">="] <- 2
if (any(rnum.signs == -1))
stop(paste("Unknown row sign in position ", which(rnum.signs ==
-1)[1]))
#
# Column signs.
#
cnum.signs <- rep(-1, nc)
cnum.signs[col.signs == "<" | col.signs == "<="] <- 1
cnum.signs[col.signs == "=" | col.signs == "=="] <- 3
cnum.signs[col.signs == ">" | col.signs == ">="] <- 2
if (any(cnum.signs == -1))
stop(paste("Unknown column sign in position ", which(cnum.signs ==
-1)[1]))
#
# A few more things, plus dual action.
#
objval <- as.double(0)
solution <- as.double(numeric(nc * nr))
status <- as.integer(0)
sens.coef.from <- sens.coef.to <- 0
duals <- duals.from <- duals.to <- 0
if (compute.sens) {
sens.coef.from <- sens.coef.to <- numeric(varcount)
duals <- duals.from <- duals.to <- numeric(varcount +
const.count)
}
#
# Stick a zero on the front of costs, and off we go.
#
costs <- as.double (c(0, c(cost.mat)))
lps.out <- .C("lp_transbig",
direction = direction,
rcount = as.integer (nr),
ccount = as.integer (nc),
costs = costs,
rsigns = as.integer (rnum.signs),
rrhs = as.double (row.rhs),
csigns = as.integer (cnum.signs),
crhs = as.double (col.rhs),
objval = objval,
int.count = int.count,
integers = integers,
solution = solution,
presolve = as.integer(presolve),
compute.sens = as.integer(compute.sens),
sens.coef.from = as.double(sens.coef.from),
sens.coef.to = as.double(sens.coef.to),
duals = as.double(duals),
duals.from = as.double(duals.from),
duals.to = as.double(duals.to),
status = status, PACKAGE="lpSolve")
#
# Set solution back into a matrix.
#
lps.out$solution = matrix(lps.out$solution, nr, nc, byrow = FALSE)
if (length(duals) > 0) {
lps.out$sens.coef.from <- matrix(lps.out$sens.coef.from,
nr, nc, byrow = TRUE)
lps.out$sens.coef.to <- matrix(lps.out$sens.coef.to,
nr, nc, byrow = TRUE)
lps.out$duals <- matrix(lps.out$duals, nr, nc, byrow = TRUE)
lps.out$duals.from <- matrix(lps.out$duals.from, nr,
nc, byrow = TRUE)
lps.out$duals.to <- matrix(lps.out$duals.to, nr, nc,
byrow = TRUE)
}
if(any(names(version) == "language"))
class(lps.out) <- "lp"
else oldClass(lps.out) <- "lp"
lps.out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.