Nothing
test_that("lpcde default output", {
set.seed(42)
n <- 100
x_data <- matrix(rnorm(1 * n, mean = 0, sd = 1), ncol = 1)
y_data <- matrix(rnorm(n, mean = 0, sd = 1))
y_grid <- stats::quantile(y_data, seq(from = 0.1, to = 0.9, by = 0.1))
# density estimation
model2 <- lpcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = 0, bw = 1.8)
print(model2)
confint(model2)
coef(model2)
vcov(model2)
plot(model2)
summary(model2, CIuniform = TRUE)
confint(model2, CIuniform = TRUE)
expect_equal(model2$opt$bw_type, "user provided")
expect_equal(model2$opt$p, 2)
expect_equal(model2$opt$q, 1)
expect_equal(model2$opt$mu, 1)
expect_equal(model2$opt$nu, 0)
expect_equal(model2$opt$kernel, "epanechnikov")
expect_equal(model2$opt$p_RBC, 3)
expect_equal(model2$opt$q_RBC, 2)
})
test_that("lpcde modified output", {
set.seed(42)
n <- 100
x_data <- matrix(rnorm(1 * n, mean = 0, sd = 1), ncol = 1)
y_data <- matrix(rnorm(n, mean = 0, sd = 1))
y_grid <- stats::quantile(y_data, seq(from = 0.1, to = 0.9, by = 0.1))
# density estimation
model2 <- lpcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = 0, mu = 0, p = 3, bw_type = "imse-rot")
summary(model2)
expect_equal(model2$opt$bw_type, "imse-rot")
expect_equal(model2$opt$p, 3)
expect_equal(model2$opt$q, 1)
expect_equal(model2$opt$mu, 0)
expect_equal(model2$opt$nu, 0)
expect_equal(model2$opt$kernel, "epanechnikov")
expect_equal(model2$opt$p_RBC, 4)
expect_equal(model2$opt$q_RBC, 2)
})
test_that("error checking", {
set.seed(42)
n <- 100
x_data <- matrix(rnorm(1 * n, mean = 0, sd = 1), ncol = 1)
y_data <- matrix(rnorm(n, mean = 0, sd = 1))
y_grid <- stats::quantile(y_data, seq(from = 0.1, to = 0.9, by = 0.1))
# density estimation
# model2 = lpcde(x_data=x_data, y_data=y_data, y_grid=y_grid, x=0, p=2, q=1, p_RBC=2, q_RBC=1, bw=1.8)
# expect_equal(model2$opt$p, model2$opt$p_RBC)
# expect_equal(model2$opt$q, model2$opt$q_RBC)
model2 <- lpcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = 0, kernel_type = "triangular", bw = 1.8, cov_flag = "diag")
expect_equal(model2$opt$kernel, "triangular")
expect_equal(model2$opt$cov_flag, "diag")
model2 <- lpcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = 0, kernel_type = "triangular", bw = 1.8, cov_flag = "off")
expect_equal(model2$CovMat$CovMat, NA)
expect_equal(model2$CovMat$CovMat_RBC, NA)
})
test_that("lpcde multivariate output", {
set.seed(42)
n <- 100
x_data <- matrix(rnorm(2 * n, mean = 0, sd = 1), ncol = 2)
y_data <- matrix(rnorm(n, mean = 0, sd = 1))
y_grid <- stats::quantile(y_data, seq(from = 0.1, to = 0.9, by = 0.1))
# density estimation
model2 <- lpcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = matrix(c(0, 0), ncol = 2), bw_type = "imse-rot")
summary(model2, CIuniform = TRUE)
expect_equal(model2$opt$p, 2)
expect_equal(model2$opt$q, 1)
expect_equal(model2$opt$mu, 1)
expect_equal(model2$opt$nu, 0)
expect_equal(model2$opt$kernel, "epanechnikov")
expect_equal(model2$opt$p_RBC, 3)
expect_equal(model2$opt$q_RBC, 2)
})
test_that("Properties of pdf estimator", {
# Setting up simulation
set.seed(30)
n <- 100
x_data <- matrix(rnorm(n, mean = 0, sd = 1))
y_data <- matrix(rnorm(n, mean = x_data, sd = 1))
y_grid <- stats::quantile(y_data, seq(from = 0.1, to = 0.9, by = 0.1))
# Regularized density estimation
model_reg <- lpcde::lpcde(x_data = x_data, y_data = y_data, y_grid = y_grid, x = 0, bw = 1, nonneg = TRUE, normalize = TRUE)
# check integration to 1
grid_diff <- c(diff(y_grid), diff(utils::tail(y_grid, 2)))
c <- sum(model_reg$Estimate[, 3] * grid_diff)
expect_equal(1, c)
# check nonegativity
a_nng <- any(model_reg$Estimate[, 3] < 0)
expect_equal(a_nng, FALSE)
# check all probabilities are less than 1
expect_equal(all(model_reg$Estimate[, 3] < 1), TRUE)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.