Nothing
lqr.fit = function(y,x.fixed,namesFix,qtl,nObs,verbose){
# initial settings
# ****************
namesFix = gsub(":", ".", namesFix)
# number of parameters for the longitudinal process
pf = ncol(x.fixed)
# ---- parameter estimation ----
# ***********************************
mod0 = suppressWarnings(rq(y ~ .-1, data = data.frame(x.fixed)))
# estimated fixed coefficients
betaf = mod0$coefficients
Xbeta = x.fixed %*% betaf
linear.predictor = c(Xbeta)
# estimated scale parameter
scale = mean(rho(x = (y - linear.predictor), qtl = qtl))
# compute densities
# ******************
resid = y - linear.predictor
fit = dal(y, linear.predictor, scale, qtl = qtl)
lk = sum(log(fit))
sigmaErr = sqrt(varAL(scale, qtl))
if(verbose){
cat("--------|-------|--------|-------------|\n")
cat(" model | qtl | iter | lk |\n")
cat("--------|-------|--------|-------------|\n")
cat(sprintf("%7s", "HOM"), sprintf("%5g", c(qtl)), sprintf("%6g", 0), sprintf("%11g", lk), "\n", sep = " | ")
cat("--------|-------|--------|-------------|\n")
}
npar = pf+1
aic = -2*lk + (2*npar)
bic = -2*lk + npar *(log(nObs))
# arrange output
names(betaf) = namesFix
res = list()
res$betaf = betaf
res$scale = scale
res$sigma.e = sigmaErr
res$lk = lk
res$npar = npar
res$AIC = aic
res$BIC = bic
res$qtl = qtl
res$nobs = nObs
res$pf = pf
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.