Nothing
#' Summary of a \code{search_lqmix} opt
#'
#' Summary method for the \code{\link{class}} \code{search_lqmix}
#'
#'
#' @param object a \code{search_lqmix} opt
#' @param ... not used
#'
#' @return Return an opt of \code{\link{class}} \code{summary.search_lqmix}.
#' This is a list of summary statistics for the optimal linear quantile mixture model given in \code{opt}, with the following elements:
#' \item{fix}{a matrix with estimates, standard errors, Z statistics, and p-values for the fixed regression coefficients for the optimal model}
#' \item{ranTC}{a matrix with estimates, standard errors, Z statistics, and p-values for the TC random coefficients (if present) for the optimal model}
#' \item{ranTV}{a matrix with estimates, standard errors, Z statistics, and p-values for the TV random coefficients (if present) for the optimal model}
#' \item{pg}{a matrix with estimates and standard errors for the prior probabilities of the finite mixture associated to TC random coefficients (if present) for the optimal model}
#' \item{delta}{a matrix with estimates and standard errors for the initial probabilities of the hidden Markov chain associated to TV random coefficients (if present) for the optimal model}
#' \item{Gamma}{a matrix with estimates and standard errors for the transition probabilities of the hidden Markov chain associated to TV random coefficients (if present) for the optimal model}
#' \item{scale}{the scale parameter for the optimal model}
#' \item{sigma.e}{the standard deviation of error terms for the optimal model}
#' \item{logLik}{the log-likelihood at convergence of the EM algorithm for the optimal model}
#' \item{npar}{the total number of model parameters for the optimal model}
#' \item{AIC}{the AIC value for the optimal model}
#' \item{BIC}{the BIC value for the optimal model}
#' \item{qtl}{the estimated quantile}
#' \item{G}{the number of mixture components associated to TC random coefficients (if present) for the optimal model}
#' \item{m}{the number of hidden states associated to TV random coefficients (if present) for the optimal model}
#' \item{nsbj}{the number of subjects}
#' \item{nobs}{the total number of observations}
#' \item{miss}{the missingness type}
#' \item{model}{the identified optimal model}
#' \item{call}{the matched call}
#'
#' @export
summary.search_lqmix = function(object, ...){
opt = object$optimal
if(any(!is.null(c(opt$se.betaf, opt$se.betarTC, opt$se.betarTV)))){
names = c("Estimate", "St.Error", "z.value", "P(>|z|)")
if(!is.null(opt$betaf)){
est = c(opt$betaf)
sef = c(opt$se.betaf)
zvalf = c(opt$betaf/sef)
pvalf = c(1.96*pnorm(-abs(zvalf)))
tabf = cbind(Estimate = est,
St.Error = sef,
t.value = zvalf,
p.value = pvalf)
colnames(tabf) = names
}else tabf = NULL
if(!is.null(opt$betarTC) & !is.null(opt$betarTV)){ #TCTV
# Time-Constant random coefficients
est = c(opt$betarTC)
seTC = c(opt$se.betarTC)
zvalTC = c(opt$betarTC/seTC)
pvalTC = c(1.96*pnorm(-abs(zvalTC)))
tabTC = cbind(Estimate = est,
St.Error = seTC,
z.value = zvalTC,
p.value = pvalTC)
colnames(tabTC) = names
rownames(tabTC) = c(sapply(colnames(opt$betarTC), function(xx) paste(xx, paste("Comp", 1:nrow(opt$betarTC), sep=""), sep="_")))
# Time-Varying random coefficients
est = c(opt$betarTV)
seTV = c(opt$se.betarTV)
zvalTV = c(opt$betarTV/seTV)
pvalTV = c(1.96*pnorm(-abs(zvalTV)))
tabTV = cbind(Estimate = est,
St.Error = seTV,
z.value = zvalTV,
p.value = pvalTV)
colnames(tabTV) = names
rownames(tabTV) = c(sapply(colnames(opt$betarTV), function(xx) paste(xx, paste("St", 1:nrow(opt$betarTV), sep=""), sep="_")))
tabMprob = cbind(Estimate = opt$pg, St.Error = opt$se.pg)
tabInit = cbind(Estimate = opt$delta, St.Error = opt$se.delta)
tmp1 = c(t(opt$Gamma))
names(tmp1) = paste(rep(rownames(opt$Gamma), each=opt$m), rep(colnames(opt$Gamma), opt$m), sep="")
tmp2 = c(t(opt$se.Gamma))
names(tmp1) = paste(rep(rownames(opt$Gamma), each=opt$m), rep(colnames(opt$Gamma), opt$m), sep="")
tabTrans = cbind(Estimate = tmp1, St.Error = tmp2)
}else if (!is.null(opt$betarTC) & is.null(opt$betarTV)){ # TC
# Time-Constant random coefficients
est = c(opt$betarTC)
seTC = c(opt$se.betarTC)
zvalTC = c(opt$betarTC/seTC)
pvalTC = c(1.96*pnorm(-abs(zvalTC)))
tabTC = cbind(Estimate = est,
St.Error = seTC,
z.value = zvalTC,
p.value = pvalTC)
colnames(tabTC) = names
rownames(tabTC) = c(sapply(colnames(opt$betarTC), function(xx) paste(xx, paste("Comp", 1:nrow(opt$betarTC), sep=""), sep="_")))
tabTV = NULL
tabMprob = cbind(Estimate = opt$pg, St.Error = opt$se.pg)
tabInit = NULL
tabTrans = NULL
}else{ # TV
# Time-Varying random coefficients
estTV = c(opt$betarTV)
seTV = c(opt$se.betarTV)
zvalTV = c(opt$betarTV/seTV)
pvalTV = c(1.96*pnorm(-abs(zvalTV)))
tabTV = cbind(Estimate = estTV,
St.Error = seTV,
z.value = zvalTV,
p.value = pvalTV)
colnames(tabTV) = names
rownames(tabTV) = c(sapply(colnames(opt$betarTV), function(xx) paste(xx, paste("St", 1:nrow(opt$betarTV), sep=""), sep="_")))
tabTC = NULL
tabMprob = NULL
tabInit = cbind(Estimate = opt$delta, St.Error = opt$se.delta)
tmp1 = c(t(opt$Gamma))
names(tmp1) = paste(rep(rownames(opt$Gamma), each=opt$m), rep(colnames(opt$Gamma), opt$m), sep="")
tmp2 = c(t(opt$se.Gamma))
names(tmp1) = paste(rep(rownames(opt$Gamma), each=opt$m), rep(colnames(opt$Gamma), opt$m), sep="")
tabTrans = cbind(Estimate = tmp1, St.Error = tmp2)
}
lk = opt$lk
nobs = opt$nobs
nsbjs = opt$nsbjs
mod = opt$mod
miss = opt$miss
scale = opt$scale
sigma.e = opt$sigma.e
qtl = opt$qtl
aic = opt$aic
bic = opt$bic
if(opt$model == "TC") G = opt$G else G = NULL
m = opt$m
G = opt$G
npar = opt$npar
res = list()
if(!is.null(tabf)) res$fix = tabf
if(!is.null(tabTC)) res$ranTC = tabTC
if(!is.null(tabTV)) res$ranTV = tabTV
if(!is.null(tabMprob)) res$pg = tabMprob
if(!is.null(tabInit)) res$delta = tabInit
if(!is.null(tabTrans)) res$Gamma = tabTrans
res$scale = scale
res$sigma.e = sigma.e
res$lk = lk
res$npar = npar
res$aic = aic
res$bic = bic
res$qtl = qtl
res$G = G
res$m = m
res$nsbjs = nsbjs
res$nobs = nobs
res$miss = miss
res$model = mod
if(!is.null(opt$call)) res$call = match.call()
class(res) = "summary.search_lqmix"
return(res)
}else{
print(opt)
cat("\n")
message("Model inference not allowed: standard errors have not been computed.")
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.