R/lsirm2pl_mar.R

Defines functions lsirm2pl_mar

Documented in lsirm2pl_mar

#' 2PL LSIRM for missing at random data.
#'
#' @description \link{lsirm2pl_mar} is used to fit 2PL LSIRM in incomplete data assumed to be missing at random.
#' \link{lsirm2pl_mar} factorizes item response matrix into column-wise item effect, row-wise respondent effect in a latent space, while considering the missing element under the assumption of missing at random. Unlike 1PL model, 2PL model assumes the item effect can vary according to respondent, allowing additional parameter multiplied with respondent effect.  The resulting latent space provides an interaction map that represents interactions between respondents and items.
#'
#' @inheritParams lsirm2pl
#' @param jump_gamma Numeric; the jumping rule for the gamma proposal density. Default is 0.025.
#' @param pr_mean_gamma Numeric; mean of log normal prior for gamma. Default is 0.5.
#' @param pr_sd_gamma Numeric; standard deviation of log normal prior for gamma. Default is 1.0.
#' @param missing.val Numeric; A number to replace missing values. Default is 99.
#' @param verbose Logical; If TRUE, MCMC samples are printed for each \code{nprint}. Default is FALSE.
#'
#' @return \code{lsirm2pl_mar} returns an object of  list containing the following components:
#'  \item{data}{Data frame or matrix containing the variables in the model.}
#'  \item{missing.val}{A number to replace missing values.}
#'  \item{bic}{Numeric value with the corresponding BIC.}
#' \item{mcmc_inf}{Details about the number of MCMC iterations, burn-in periods, and thinning intervals.}
#' \item{map_inf}{The log maximum a posteriori (MAP) value and the iteration number at which this MAP value occurs.}
#' \item{beta_estimate}{Posterior estimates of the beta parameter.}
#' \item{theta_estimate}{Posterior estimates of the theta parameter.}
#' \item{sigma_theta_estimate}{Posterior estimates of the standard deviation of theta.}
#' \item{gamma_estimate}{posterior estimates of gamma parameter.}
#' \item{z_estimate}{Posterior estimates of the z parameter.}
#' \item{w_estimate}{Posterior estimates of the w parameter.}
#'  \item{imp_estimate}{Probability of imputating a missing value with 1.}
#' \item{beta}{Posterior samples of the beta parameter.}
#' \item{theta}{Posterior samples of the theta parameter.}
#' \item{gamma}{Posterior samples of the gamma parameter.}
#' \item{theta_sd}{Posterior samples of the standard deviation of theta.}
#' \item{z}{Posterior samples of the z parameter, represented as a 3-dimensional matrix where the last axis denotes the dimension of the latent space.}
#' \item{w}{Posterior samples of the w parameter, represented as a 3-dimensional matrix where the last axis denotes the dimension of the latent space.}
#'  \item{imp}{Imputation for missing Values using posterior samples.}
#' \item{accept_beta}{Acceptance ratio for the beta parameter.}
#' \item{accept_theta}{Acceptance ratio for the theta parameter.}
#' \item{accept_z}{Acceptance ratio for the z parameter.}
#' \item{accept_w}{Acceptance ratio for the w parameter.}
#' \item{accept_gamma}{Acceptance ratio for the gamma parameter.}
#'  \item{alpha_estimate}{Posterior estimates of the alpha parameter.}
#'  \item{alpha}{Posterior estimates of the alpha parameter.}
#'  \item{accept_alpha}{Acceptance ratio for the alpha parameter.}
#'
#' @details \code{lsirm2pl_mar} models the probability of correct response by respondent \eqn{j} to item \eqn{i} with item effect \eqn{\beta_i}, respondent effect \eqn{\theta_j}  in the shared metric space, with \eqn{\gamma} represents the weight of the distance term. For 2pl model, the the item effect is assumed to have additional discrimination parameter \eqn{\alpha_i} multiplied by \eqn{\theta_j}: \deqn{logit(P(Y_{j,i} = 1|\theta_j,\alpha_i,\beta_i,\gamma,z_j,w_i))=\theta_j*\alpha_i+\beta_i-\gamma||z_j-w_i||}Under the assumption of missing at random, the model takes the missing element into consideration in the sampling procedure. For the details of missing at random assumption and data augmentation, see References.
#'
#' @references  Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data (Vol. 793). John Wiley & Sons.
#' @examples
#' \donttest{
#' # generate example item response matrix
#' data     <- matrix(rbinom(500, size = 1, prob = 0.5), ncol=10, nrow=50)
#'
#' # generate example missing indicator matrix
#' missing_mat     <- matrix(rbinom(500, size = 1, prob = 0.2), ncol=10, nrow=50)
#'
#' # make missing value with missing indicator matrix
#' data[missing_mat==1] <- 99
#'
#' lsirm_result <- lsirm2pl_mar(data)
#'
#' # The code following can achieve the same result.
#' lsirm_result <- lsirm(data ~ lsirm2pl(spikenslab = FALSE, fixed_gamma = FALSE,
#'                       missing_data = "mar"))
#' }
#' @export
lsirm2pl_mar = function(data, ndim = 2, niter = 15000, nburn = 2500, nthin = 5, nprint = 500,
                        jump_beta = 0.4, jump_theta = 1, jump_alpha = 1.0, jump_gamma = 0.025, jump_z = 0.5, jump_w = 0.5,
                        pr_mean_beta = 0, pr_sd_beta = 1, pr_mean_theta = 0, pr_mean_gamma = 0.5, pr_sd_gamma = 1,
                        pr_mean_alpha = 0.5, pr_sd_alpha = 1, pr_a_theta = 0.001, pr_b_theta = 0.001,
                        missing.val = 99, verbose=FALSE){
  if(niter < nburn){
    stop("niter must be greater than burn-in process.")
  }
  if(is.data.frame(data)){
    cname = colnames(data)
  }else{
    cname = paste("item", 1:ncol(data), sep=" ")
  }

  # cat("\n\nFitting with MCMC algorithm\n")


  output <- lsirm2pl_mar_cpp(as.matrix(data), ndim, niter, nburn, nthin, nprint,
                             jump_beta, jump_theta, jump_alpha, jump_gamma, jump_z, jump_w,
                             pr_mean_beta, pr_sd_beta, pr_mean_theta, pr_mean_gamma, pr_sd_gamma,
                             pr_mean_alpha, pr_sd_alpha, pr_a_theta, pr_b_theta,
                             missing.val, verbose=verbose)

  mcmc.inf = list(nburn=nburn, niter=niter, nthin=nthin)
  nsample <- nrow(data)
  nitem <- ncol(data)

  nmcmc = as.integer((niter - nburn) / nthin)
  max.address = min(which.max(output$map))
  map.inf = data.frame(value = output$map[which.max(output$map)], iter = which.max(output$map))
  w.star = output$w[max.address,,]
  z.star = output$z[max.address,,]
  w.proc = array(0,dim=c(nmcmc,nitem,ndim))
  z.proc = array(0,dim=c(nmcmc,nsample,ndim))

  # cat("\n\nProcrustes Matching Analysis\n")
cat("\n")

  for(iter in 1:nmcmc){
    z.iter = output$z[iter,,]
    w.iter = output$w[iter,,]

    if(ndim == 1){
      z.iter = as.matrix(z.iter)
      w.iter = as.matrix(w.iter)
      z.star = as.matrix(z.star)
      w.star = as.matrix(w.star)
    }

    if(iter != max.address) z.proc[iter,,] = procrustes(z.iter,z.star)$X.new
    else z.proc[iter,,] = z.iter

    if(iter != max.address) w.proc[iter,,] = procrustes(w.iter,w.star)$X.new
    else w.proc[iter,,] = w.iter
  }

  w.est = colMeans(w.proc, dims = 1)
  z.est = colMeans(z.proc, dims = 1)

  beta.estimate = apply(output$beta, 2, mean)
  theta.estimate = apply(output$theta, 2, mean)
  alpha.estimate = apply(output$alpha, 2, mean)
  sigma_theta.estimate = mean(output$sigma_theta)
  gamma.estimate = mean(output$gamma)
  imp.estimate = apply(output$impute, 2, mean)


  beta.summary = data.frame(cbind(apply(output$beta, 2, mean), t(apply(output$beta, 2, function(x) quantile(x, probs = c(0.025, 0.975))))))
  colnames(beta.summary) <- c("Estimate", "2.5%", "97.5%")
  rownames(beta.summary) <- cname

  # Calculate BIC
  # cat("\n\nCalculate BIC\n")
  missing_est = ifelse(imp.estimate > 0.5, 1, 0)
  data[data == missing.val] = missing_est
  log_like = log_likelihood_2pl_cpp(as.matrix(data), ndim, as.matrix(beta.estimate), as.matrix(alpha.estimate), as.matrix(theta.estimate), gamma.estimate, z.est, w.est, missing.val)
  p = 2 * nitem + nsample + 1 + 1 + ndim * nitem + ndim * nsample
  bic = -2 * log_like[[1]] + p * log(nsample * nsample)

  result <- list(data = data,
              missing.val = missing.val,
              bic = bic,
                 mcmc_inf = mcmc.inf,
                 map_inf = map.inf,
                 beta_estimate  = beta.estimate,
                 beta_summary = beta.summary,
                 theta_estimate = theta.estimate,
                 sigma_theta_estimate    = sigma_theta.estimate,
                 gamma_estimate = gamma.estimate,
                 alpha_estimate = alpha.estimate,
                 z_estimate     = z.est,
                 w_estimate     = w.est,
                 imp_estimate   = imp.estimate,
                 beta           = output$beta,
                 theta          = output$theta,
                 theta_sd       = output$sigma_theta,
                 gamma          = output$gamma,
                 alpha          = output$alpha,
                 z              = z.proc,
                 w              = w.proc,
                 imp            = output$impute,
                 accept_beta    = output$accept_beta,
                 accept_theta   = output$accept_theta,
                 accept_w       = output$accept_w,
                 accept_z       = output$accept_z,
                 accept_gamma   = output$accept_gamma,
                 accept_alpha   = output$accept_alpha)
  class(result) = "lsirm"

  return(result)
}

Try the lsirm12pl package in your browser

Any scripts or data that you put into this service are public.

lsirm12pl documentation built on April 4, 2025, 2:40 a.m.