Nothing
#' 2PL Rasch model.
#'
#' @description \link{twopl} is used to fit 2PL Rasch model.
#' Unlike 1PL model, 2PL model assumes the item effect can vary according to respondent, allowing additional parameter multiplied with respondent effect.
#'
#' @param data Matrix; binary item response matrix to be analyzed. Each row is assumed to be respondent and its column values are assumed to be response to the corresponding item.
#' @param niter Numeric; number of iterations to run MCMC sampling. default value is 15000.
#' @param nburn Numeric; number of initial, pre-thinning, MCMC iterations to discard. default value is 2500.
#' @param nthin Numeric;number of thinning, MCMC iterations to discard. default value is 5.
#' @param nprint Numeric; MCMC samples is displayed during execution of MCMC chain for each \code{nprint}. default value is 500.
#' @param jump_beta Numeric; jumping rule of the proposal density for beta. default value is 0.4.
#' @param jump_theta Numeric; jumping rule of the proposal density for theta. default value is 1.0.
#' @param jump_alpha Numeric; jumping rule of the proposal density for alpha default value is 1.0.
#' @param pr_mean_beta Numeric; mean of normal prior for beta. default value is 0.
#' @param pr_sd_beta Numeric; standard deviation of normal prior for beta. default value is 1.0.
#' @param pr_mean_theta Numeric; mean of normal prior for theta. default value is 0.
#' @param pr_mean_alpha Numeric; mean of normal prior for alpha. default value is 0.5.
#' @param pr_sd_alpha Numeric; mean of normal prior for beta. default value is 1.0.
#' @param pr_a_theta Numeric; shape parameter of inverse gamma prior for variance of theta. default value is 0.001.
#' @param pr_b_theta Numeric; scale parameter of inverse gamma prior for variance of theta. default value is 0.001.
#'
#'
#' @return \code{twopl} returns an object of list containing the following components:
#' \item{beta_estimate}{posterior estimation of beta.}
#' \item{theta_estimate}{posterior estimation of theta.}
#' \item{sigma_theta_estimate}{posterior estimation of standard deviation of theta.}
#' \item{alpha_estimate}{posterior estimation of alpha.}
#' \item{beta}{posterior samples of beta.}
#' \item{theta}{posterior samples of theta.}
#' \item{theta_sd}{posterior samples of standard deviation of theta.}
#' \item{alpha}{posterior samples of alpha.}
#' \item{accept_beta}{accept ratio of beta.}
#' \item{accept_theta}{accept ratio of theta.}
#' \item{accept_alpha}{accept ratio of alpha.}
#'
#' @details \code{twopl} models the probability of correct response by respondent \eqn{j} to item \eqn{i} with item effect \eqn{\beta_i}, respondent effect \eqn{\theta_j}. For 2pl model, the the item effect is assumed to have additional discrimination parameter \eqn{\alpha_i} multiplied by \eqn{\theta_j}: \deqn{logit(P(Y_{j,i} = 1|\theta_j,\beta_i, \alpha_i))=\theta_j * \alpha_i+\beta_i}
#'
#' @examples
#' \donttest{
#' # generate example item response matrix
#' data <- matrix(rbinom(500, size = 1, prob = 0.5),ncol=10,nrow=50)
#'
#' result <- twopl(data)
#' }
#' @export
twopl = function(data, niter = 15000, nburn = 2500, nthin = 5, nprint = 500,
jump_beta = 0.4, jump_theta = 1.0, jump_alpha = 1.0,
pr_mean_beta = 0, pr_sd_beta = 1.0, pr_mean_theta = 0,
pr_mean_alpha = 0.5, pr_sd_alpha = 1.0, pr_a_theta = 0.001, pr_b_theta = 0.001){
if(is.data.frame(data)){
cname = colnames(data)
}else{
cname = paste("item", 1:ncol(data), sep=" ")
}
output <- two_pl(as.matrix(data), niter, nburn, nthin, nprint,
jump_beta, jump_theta, jump_alpha,
pr_mean_beta, pr_sd_beta, pr_mean_theta,
pr_mean_alpha, pr_sd_alpha, pr_a_theta, pr_b_theta)
mcmc.inf = list(nburn=nburn, niter=niter, nthin=nthin)
nsample <- nrow(data)
nitem <- ncol(data)
beta.estimate = apply(output$beta, 2, mean)
theta.estimate = apply(output$theta, 2, mean)
alpha.estimate = apply(output$alpha, 2, mean)
sigma_theta.estimate = mean(output$sigma_theta)
beta.summary = data.frame(cbind(apply(output$beta, 2, mean), t(apply(output$beta, 2, function(x) quantile(x, probs = c(0.025, 0.975))))))
colnames(beta.summary) <- c("Estimate", "2.5%", "97.5%")
rownames(beta.summary) <- cname
result <- list(mcmc_inf = mcmc.inf,
beta_estimate = beta.estimate,
beta_summary = beta.summary,
theta_estimate = theta.estimate,
sigma_theta_estimate = sigma_theta.estimate,
alpha_estimate = alpha.estimate,
beta = output$beta,
theta = output$theta,
theta_sd = output$sigma_theta,
alpha = output$alpha,
accept_beta = output$accept_beta,
accept_theta = output$accept_theta,
accept_alpha = output$accept_alpha)
class(result) = "lsirm"
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.