Nothing
# Get a vector of data depths for k letter values
getDepth <- function(k, n) {
# compute letter values based on depth
depth <- rep(0,k)
depth[1] <- (1+n)/2
if (k > 1) {
for (j in 2:k) depth[j] <- (1 + floor(depth[j - 1])) / 2
}
depth
}
# Calculate first k letter values for vector x
calcLV <- function(x, k) {
n <- length(x)
depth <- getDepth(k, n)
y <- sort(x)
d <- c(rev(depth),n-depth+1)
qu <- (y[floor(d)] + y[ceiling(d)])/2
# floor and ceiling is the same for .0 values
# .5 values yield average of two neighbours
# k, k+1 is the median
# report only once
qu[-k]
}
# Determine names of first k letter values
# output is (1) list of names starting with 'M'edian, and
# (2) a vector of letter values ordered by rank from lower kth letter value to upper k letter value
nameLV <- function(k) {
# list of
# k letter values (starting with median)
# lower/upper letter values ordered from lowest to highest
lvs <- NULL
conf <- "M"
if (k > 1) {
lvs <- c(LETTERS[6:1], LETTERS[c(26:14, 12:7)])[1:(k - 1)]
conf <- c(paste(rev(lvs), "l", sep = ""), "M", paste(lvs, "u", sep = ""))
}
list(LV = c("M", lvs), conf = conf)
}
#' Determine depth of letter values needed for n observations.
#'
#' @details Supply one of \code{k}, \code{alpha} or \code{perc}.
#'
#' @param n number of observation to be shown in the LV boxplot
#' @param k number of letter value statistics used
#' @param alpha if supplied, depth k is calculated such that (1-\code{alpha})100% confidence
#' intervals of an LV statistic do not extend into
#' neighboring LV statistics.
#' @param perc if supplied, depth k is adjusted such that \code{perc} percent
#' outliers are shown
#' @export
determineDepth <- function(n, k = NULL, alpha = NULL, perc = NULL) {
if (!is.null(k)) {
stopifnot(is.numeric(k) && length(k) == 1)
k <- as.integer(k)
} else if (!is.null(perc)) {
# we're aiming for perc percent of outlying points
stopifnot(is.numeric(perc) && length(perc) == 1)
k <- ceiling((log2(n))+1) - ceiling((log2(n*perc*0.01))+1) + 1
} else if (!is.null(alpha)) {
# confidence intervals around an LV statistic
# should not extend into surrounding LV statistics
stopifnot(is.numeric(alpha) && length(alpha) == 1)
stopifnot(alpha > 0 && alpha < 1)
# cat(sprintf("two rules: %d (ceiling) %d (floor)", ceiling((log2(n))-log2(2*qnorm(alpha+(1-alpha)/2)^2)),
# floor(log2(n)) - floor(log2(2*qnorm(1-(1-alpha)/2)^2))))
k <- floor(log2(n)) - floor(log2(2*qnorm(1-(1-alpha)/2)^2))
} else {
stop("Must specify one of k, alpha, perc", call. = FALSE)
}
max(k, 1L)
}
#' Compute table of k letter values for vector x
#'
#' @param x input numeric vector
#' @param k number of letter values to compute
#' @param alpha alpha-threshold for confidence level
#' @export
lvtable <- function(x, k, alpha=0.95) {
n <- length(x)
if (2^k > n) k <- ceiling(log2(n)) + 1
# depths for letter values
depth <- getDepth(k, n)
# letter value
qu <- calcLV(x,k)
tab <- matrix(c(c(rev(depth), depth[-1]), qu), ncol = 2,
dimnames = list(nameLV(k)[[2]], c("depth","LV")))
# confidence limits
conf <- confintLV(x, k, alpha = alpha)
cbind(tab, conf)
}
# confidence interval for k letter values
confintLV <- function(x, k, alpha=0.95) {
n <- length(x)
y <- sort(x)
depth <- getDepth(k,n)
extend <- ceiling(0.5 *sqrt(2*depth-1) * qnorm(alpha+(1-alpha)/2))
low <- depth - extend
high <- depth + extend
clow <- pmax(1,ceiling(low))
flow <- pmax(1,floor(low))
chigh <- pmin(n, ceiling(high))
fhigh <- pmin(n, floor(high))
lvllow <- rev(rowMeans(cbind(y[clow],y[flow]), na.rm=T))
if (length(lvllow) == 0) lvllow <- NA
lvlhigh <- rev(rowMeans(cbind(y[chigh],y[fhigh]), na.rm=T))
if (length(lvlhigh) == 0) lvlhigh <- NA
# no 1 is the median - that's the last element in lvl
lvulow <- rowMeans(cbind(y[n-chigh],y[n-fhigh]), na.rm=T)[-1]
lvuhigh <- rowMeans(cbind(y[n-clow],y[n-flow]), na.rm=T)[-1]
conf <- cbind(c(lvllow, lvulow), c(lvlhigh, lvuhigh))
colnames(conf) <- c(paste((1 - alpha) / 2 * 100, "%" ,sep = "") ,
paste((alpha + (1 - alpha) / 2) * 100, "%", sep = ""))
conf
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.