R/index_mome.R

Defines functions n_prods index_of_momome index_of_mome

Documented in index_of_mome index_of_momome

#' @title Index of Moderated Mediation
#' and Index of Moderated Moderated
#' Mediation
#'
#' @description It computes the index of
#' moderated mediation and the index of
#' moderated moderated mediation
#' proposed by Hayes (2015, 2018).
#'
#' @details The function
#' [index_of_mome()] computes the *index
#' of moderated mediation* proposed by
#' Hayes (2015). It supports any path in
#' a model with one (and only one)
#' component path moderated. For
#' example, `x->m1->m2->y` with `x->m1`
#' moderated by `w`. It measures the
#' change in indirect effect when the
#' moderator increases by one unit.
#'
#' The function [index_of_momome()]
#' computes the *index of moderated
#' moderated mediation* proposed by
#' Hayes (2018). It supports any path in
#' a model, with two component paths
#' moderated, each by one moderator. For
#' example, `x->m1->m2->y` with `x->m1`
#' moderated by `w` and `m2->y`
#' moderated by `z`. It measures the
#' change in the index of moderated
#' mediation of one moderator when the
#' other moderator increases by one
#' unit.
#'
#' @return It returns a
#' `cond_indirect_diff`-class object.
#' This class has a `print` method
#' ([print.cond_indirect_diff()]), a
#' `coef` method for extracting the
#' index ([coef.cond_indirect_diff()]),
#' and a `confint` method for extracting
#' the confidence interval if
#' available
#' ([confint.cond_indirect_diff()]).
#'
#'
#' @param x Character. The name of the
#' predictor at the start of the path.
#'
#' @param y Character. The name of the
#' outcome variable at the end of the
#' path.
#'
#' @param m A vector of the variable
#' names of the mediator(s). The path
#' goes from the first mediator
#' successively to the last mediator. If
#' `NULL`, the default, the path goes
#' from `x` to `y`.
#'
#' @param w Character. The name of the
#' moderator.
#'
#' @param z Character. The name of the
#' second moderator, for computing the
#' index of moderated moderated
#' mediation.
#'
#' @param fit The fit object. Can be a
#' [lavaan::lavaan-class] object, a list
#' of [lm()] outputs, or an object
#' created by [lm2list()].
#' It can also be
#' a `lavaan.mi` object
#' returned by
#' [semTools::runMI()] or
#' its wrapper, such as [semTools::sem.mi()].
#'
#' @param boot_ci Logical. Whether
#' bootstrap confidence interval will be
#' formed. Default is `FALSE`.
#'
#' @param level The level of confidence
#' for the bootstrap confidence
#' interval. Default is .95.
#'
#' @param boot_out If `boot_ci` is
#' `TRUE`, users can supply pregenerated
#' bootstrap estimates. This can be the
#' output of [do_boot()]. For
#' [indirect_effect()] and
#' [cond_indirect_effects()], this can
#' be the output of a previous call to
#' [cond_indirect_effects()],
#' [indirect_effect()], or
#' [cond_indirect()] with bootstrap
#' confidence intervals requested. These
#' stored estimates will be reused such
#' that there is no need to do
#' bootstrapping again. If not supplied,
#' the function will try to generate
#' them from `fit`.
#'
#' @param R Integer. If `boot_ci` is
#' `TRUE`, `boot_out` is `NULL`, and
#' bootstrap standard errors not
#' requested if `fit` is a
#' [lavaan-class] object, this function
#' will do bootstrapping on `fit`. `R`
#' is the number of bootstrap samples.
#' Default is 100. For Monte Carlo
#' simulation, this is the number
#' of replications.
#'
#' @param seed If bootstrapping
#' or Monte Carlo simulation is
#' conducted, this is the seed for the
#' bootstrapping or simulation.
#' Default is `NULL` and
#' seed is not set.
#'
#' @param progress Logical. Display
#' bootstrapping progress or not.
#' Default is `TRUE`.
#'
#' @param mc_ci Logical. Whether
#' Monte Carlo confidence interval will be
#' formed. Default is `FALSE`.
#'
#' @param mc_out If `mc_ci` is
#' `TRUE`, users can supply pregenerated
#' Monte Carlo estimates. This can be the
#' output of [do_mc()]. For
#' [indirect_effect()] and
#' [cond_indirect_effects()], this can
#' be the output of a previous call to
#' [cond_indirect_effects()],
#' [indirect_effect()], or
#' [cond_indirect()] with Monte Carlo
#' confidence intervals requested. These
#' stored estimates will be reused such
#' that there is no need to do
#' Monte Carlo simulation again. If not
#' supplied,
#' the function will try to generate
#' them from `fit`.
#'
#' @param ci_out If `ci_type` is supplied,
#' this is the corresponding argument.
#' If `ci_type` is `"boot"`, this
#' argument will be used as `boot_out`.
#' If `ci_type` is `"mc"`, this
#' argument will be used as `mc_out`.
#'
#' @param ci_type The type of
#' confidence intervals to be formed.
#' Can be either `"boot"` (bootstrapping)
#' or `"mc"` (Monte Carlo). If not
#' supplied or is `NULL`, will check
#' other arguments
#' (e.g, `boot_ci` and `mc_ci`). If
#' supplied, will override `boot_ci`
#' and `mc_ci`.
#'
#' @param boot_type If bootstrap
#' confidence interval is to be formed,
#' the type of bootstrap confidence
#' interval. The supported types
#' are `"perc"` (percentile bootstrap
#' confidence interval, the default and
#' recommended type) and `"bc"`
#' (bias-corrected, or BC, bootstrap
#' confidence interval).
#'
#' @param ... Arguments to be passed to
#' [cond_indirect_effects()]
#'
#'
#' @seealso [cond_indirect_effects()]
#'
#' @references
#' Hayes, A. F. (2015). An index and test of linear moderated mediation.
#' *Multivariate Behavioral Research, 50*(1), 1-22.
#' \doi{10.1080/00273171.2014.962683}
#'
#' Hayes, A. F. (2018). Partial, conditional, and moderated moderated
#' mediation: Quantification, inference, and interpretation.
#' *Communication Monographs, 85*(1), 4-40.
#' \doi{10.1080/03637751.2017.1352100}
#'
#' @examples
#'
#' library(lavaan)
#' dat <- modmed_x1m3w4y1
#' dat$xw1 <- dat$x * dat$w1
#' mod <-
#' "
#' m1 ~ a * x  + f * w1 + d * xw1
#' y  ~ b * m1 + cp * x
#' ind_mome := d * b
#' "
#' fit <- sem(mod, dat,
#'            meanstructure = TRUE, fixed.x = FALSE,
#'            se = "none", baseline = FALSE)
#' est <- parameterEstimates(fit)
#'
#' # R should be at least 2000 or even 5000 in real research.
#' # parallel is set to TRUE by default.
#' # Therefore, in research, the argument parallel can be omitted.
#' out_mome <- index_of_mome(x = "x", y = "y", m = "m1", w = "w1",
#'                           fit = fit,
#'                           boot_ci = TRUE,
#'                           R = 42,
#'                           seed = 4314,
#'                           parallel = FALSE,
#'                           progress = FALSE)
#' out_mome
#' coef(out_mome)
#' # From lavaan
#' print(est[19, ], nd = 8)
#' confint(out_mome)
#'
#'
#' @export
#'
#' @describeIn index_of_mome Compute the
#' index of moderated mediation.
#'
#' @order 1

index_of_mome <- function(x,
                          y,
                          m = NULL,
                          w = NULL,
                          fit = NULL,
                          boot_ci = FALSE,
                          level = .95,
                          boot_out = NULL,
                          R = 100,
                          seed = NULL,
                          progress = TRUE,
                          mc_ci = FALSE,
                          mc_out = NULL,
                          ci_type = NULL,
                          ci_out = NULL,
                          boot_type = c("perc", "bc"),
                          ...) {
    boot_type <- match.arg(boot_type)
    if (is.null(w) || length(w) != 1) {
        stop("The path must have exactly one moderator.")
      }
    mm_w <- mod_levels(w, fit = fit, values = c(0, 1))
    prods <- cond_indirect(wvalues = mm_w[1, ],
                            x = x,
                            y = y,
                            m = m,
                            fit = fit,
                            get_prods_only = TRUE)
    if (length(n_prods(prods)) != 1) {
        stop("The index cannot be computed when there are more than one moderators")
      }
    out <- cond_indirect_effects(wlevels = mm_w, x = x, y = y,
                                 m = m, fit = fit, level = level,
                                 boot_ci = boot_ci,
                                 R = R,
                                 seed = seed,
                                 progress = progress,
                                 boot_out = boot_out,
                                 mc_ci = mc_ci,
                                 mc_out = mc_out,
                                 ci_type = ci_type,
                                 ci_out = ci_out,
                                 boot_type = boot_type,
                                 ...)
    out <- cond_indirect_diff(out, from = 2, to = 1, level = level)
    out$type <- "index_of_mome"
    out
  }

#' @examples
#'
#' library(lavaan)
#' dat <- modmed_x1m3w4y1
#' dat$xw1 <- dat$x * dat$w1
#' dat$m1w4 <- dat$m1 * dat$w4
#' mod <-
#' "
#' m1 ~ a * x  + f1 * w1 + d1 * xw1
#' y  ~ b * m1 + f4 * w4 + d4 * m1w4 + cp * x
#' ind_momome := d1 * d4
#' "
#' fit <- sem(mod, dat,
#'            meanstructure = TRUE, fixed.x = FALSE,
#'            se = "none", baseline = FALSE)
#' est <- parameterEstimates(fit)
#'
#' # See the example of index_of_mome on how to request
#' # bootstrap confidence interval.
#' out_momome <- index_of_momome(x = "x", y = "y", m = "m1",
#'                               w = "w1", z = "w4",
#'                               fit = fit)
#' out_momome
#' coef(out_momome)
#' print(est[32, ], nd = 8)
#'
#' @export
#'
#' @describeIn index_of_mome Compute the
#' index of moderated moderated
#' mediation.
#'
#' @order 2

index_of_momome <- function(x,
                            y,
                            m = NULL,
                            w = NULL,
                            z = NULL,
                            fit = NULL,
                            boot_ci = FALSE,
                            level = .95,
                            boot_out = NULL,
                            R = 100,
                            seed = NULL,
                            progress = TRUE,
                            mc_ci = FALSE,
                            mc_out = NULL,
                            ci_type = NULL,
                            ci_out = NULL,
                            boot_type = c("perc", "bc"),
                            ...) {
    boot_type <- match.arg(boot_type)
    if (is.null(w) || is.null(z) ||
        length(w) != 1 || length(z) != 1) {
        stop("The path must have exactly two moderators.")
      }
    mm_w <- mod_levels(w, fit = fit, values = c(0, 1))
    mm_z <- mod_levels(z, fit = fit, values = c(0, 1))
    mm <- merge_mod_levels(mm_w, mm_z)
    prods <- cond_indirect(wvalues = mm[1, ],
                            x = x,
                            y = y,
                            m = m,
                            fit = fit,
                            get_prods_only = TRUE)
    if (!all.equal(n_prods(prods), c(1, 1), check.attributes = FALSE)) {
        stop("The index can be computed only when there are exactly two moderators.")
      }
    out <- cond_indirect_effects(wlevels = mm, x = x, y = y,
                                 m = m, fit = fit, level = level,
                                 boot_ci = boot_ci,
                                 R = R,
                                 seed = seed,
                                 progress = progress,
                                 boot_out = boot_out,
                                 mc_ci = mc_ci,
                                 mc_out = mc_out,
                                 ci_type = ci_type,
                                 ci_out = ci_out,
                                 boot_type = boot_type,
                                 ...)
    i0 <- cond_indirect_diff(out, from = 4, to = 3, level = level)
    i1 <- cond_indirect_diff(out, from = 2, to = 1, level = level)
    ind <- stats::coef(i1) - stats::coef(i0)
    if (identical(i1$mc_diff, NA) || identical(i0$mc_diff, NA)) {
        has_mc <- FALSE
      } else {
        has_mc <- TRUE
      }
    if (identical(i1$boot_diff, NA) || identical(i0$boot_diff, NA)) {
        has_boot <- FALSE
      } else {
        has_boot <- TRUE
      }
    if (all(has_mc, has_boot)) stop("Cannot for both Monte Carlo and bootstrap confidence intervals.")
    if (has_mc) {
        ind_mc <- i1$mc_diff - i0$mc_diff
        ind_mc_ci <- boot_ci_internal(t0 = ind,
                                      t = ind_mc,
                                      level = level,
                                      boot_type = "perc")
        ind_mc_se <- stats::sd(ind_mc, na.rm = TRUE)
      } else {
        ind_mc <- NA
        ind_mc_ci <- NA
        ind_mc_se <- NA
      }
    if (has_boot) {
        ind_boot <- i1$boot_diff - i0$boot_diff
        ind_boot_ci <- boot_ci_internal(t0 = ind,
                               t = ind_boot,
                               level = level,
                               boot_type = boot_type)
        ind_boot_p <- est2p(ind_boot)
        ind_boot_se <- stats::sd(ind_boot, na.rm = TRUE)
      } else {
        ind_boot <- NA
        ind_boot_ci <- NA
        ind_boot_p <- NA
        ind_boot_se <- NA
      }
    ind_ci <- NA
    ind_se <- NA
    if (has_mc) ind_ci <- ind_mc_ci
    if (has_boot) ind_ci <- ind_boot_ci
    if (has_mc) ind_se <- ind_mc_se
    if (has_boot) ind_se <- ind_boot_se
    if (has_mc) ci_type <- "mc"
    if (has_boot) ci_type <- "boot"
    out <- list(index = ind,
                ci = ind_ci,
                pvalue = ind_boot_p,
                se = ind_se,
                level = level,
                from = i0$from,
                to = i0$to,
                from1 = i1$from,
                to1 = i1$to,
                output = out,
                boot_diff = ind_boot,
                mc_diff = ind_mc,
                type = "index_of_momome",
                boot_type = boot_type,
                ci_type = ci_type)
    class(out) <- c("cond_indirect_diff", class(out))
    out
  }

# Check the number of product terms
#' @noRd

n_prods <- function(prods) {
    isna <- sapply(prods, function(x) all(is.na(x)))
    if (all(isna)) {
        return(0)
      }
    prod1 <- prods[!isna]
    np <- sapply(prod1, function(x) length(unlist(x$prod)))
    return(np)
  }

Try the manymome package in your browser

Any scripts or data that you put into this service are public.

manymome documentation built on June 22, 2024, 9:34 a.m.