sw_gibbs | R Documentation |
Calculates the seawater specific gibbs free energy, including derivatives up to order 2, for a given temperature, salinity and pressure.
The Gibbs function of seawater g(S,t,p) is related to the specific enthalpy h and entropy s, by g = h - (273.15 K + t) s
sw_gibbs(S = 35, t = 25, p = P-1.013253,
P = 1.013253, dS = 0, dt = 0, dp = 0)
S |
Absolute salinity (g/kg), |
t |
Temperature, |
p |
gauge or applied pressure, pressure referenced against the local atmospheric pressure, bar |
P |
true pressure, bar |
dS |
order of the S derivative |
dt |
order of the t derivative |
dp |
order of the p derivative |
The Gibbs function, J/kg, or its derivative
The gibbs function is defined as the sum of a pure water part and the saline part (IAPWS-08)
The coefficients from McDougall et al., 2009 were used. For temperature, they differ slightly from Feistel 2003 and Feistel 2008, which is why, for temperatures different from 0, there is a slight offset from the estimates as from table 22 or 21 from Feistel (2008).
Karline Soetaert <karline.soetaert@nioz.nl>
Feistel R, 2008. A Gibbs function for seawater thermodynamics for -6 to 80 dgC and salinity up to 120 g/kg. Deep-Sea Research I, 55, 1639-1671.
McDougall TJ, Feistel R, Millero FJ, Jackett DR, Wright DG, King BA, Marion GM, Chen C-T A and Spitzer P, 2009. Calculation of the Thermophysical Properties of Seawater, Global Ship-based Repeat Hydrography Manual, IOCCP Report No. 14, ICPO Publication Series no. 134.
sw_adtgrad
, sw_alpha
, sw_beta
,
sw_comp
, sw_conserv
, sw_cp
,
sw_dens
,
sw_depth
, sw_enthalpy
, sw_entropy
,
sw_kappa
,
sw_kappa_t
, sw_sfac
,
sw_svel
, sw_tfreeze
, sw_tpot
convert_PStoAS
, to convert from practical salinity (-) to
absolute salinity (g/kg)
# table 22 Feistel 2008
sw_gibbs(0, 0, 0) #= 101.34274
sw_gibbs(0, 0, 0, dS = 1) # 0
sw_gibbs(0, 0, 0, dt = 1) #0.147643376
sw_gibbs(0, 0, 0, dp = 1) #0.1000015694e-2
sw_gibbs(0, 0, 0, dS = 1, dp = 1) #0
sw_gibbs(0, 0, 0, dt = 1, dp = 1) #-0.677700318e-7
sw_gibbs(0, 79.85, 0) #-0.446114969e5 differs (see note)
sw_gibbs(0, 79.85, 0, dt = 1) #-0.107375993e4 differs
sw_gibbs(0, 79.85, 0, dp = 1) #0.102892956e-2 differs
sw_gibbs(0, 79.85, 0, dS = 1, dp = 1) #0
sw_gibbs(0, 79.85, 0, dt = 1, dp = 1) #0.659051552e-6
sw_gibbs(0, 0, 998.98675) #0.977303862e5
sw_gibbs(0, 0, 998.98675, dt = 1) #0.851466502e1
sw_gibbs(0, 0, 998.98675, dp = 1) #0.956683329e-3
sw_gibbs(0, 0, 998.98675, dS = 1, dp = 1) #0
sw_gibbs(0, 0, 998.98675, dt = 1, dp = 1) #0.199079571e-6
# table 21 Feistel 2008
sw_gibbs(35.16504, 0, 0) #=0
sw_gibbs(35.16504, 0, 0, dS = 1) #0.639974067e2 differs
sw_gibbs(35.16504, 0, 0, dt = 1) #=0
sw_gibbs(35.16504, 0, 0, dp = 1) #0.972661217e-3
sw_gibbs(35.16504, 0, 0, dS = 1, dp = 1) #-0.759615412e-6
sw_gibbs(35.16504, 0, 0, dt = 1, dp = 1) #0.515167556e-7 !!!
sw_gibbs(100, 79.85, 0) #=-0.295243229e5 differs
sw_gibbs(100, 79.85, 0, dS = 1) #0.251957276e3
sw_gibbs(100, 79.85, 0, dt = 1) #-0.917529024e3 differs
sw_gibbs(100, 79.85, 0, dp = 1) #0.971006828e-3 differs
sw_gibbs(100, 79.85, 0, dS = 1, dp = 1) #-0.305957802e-6
sw_gibbs(100, 79.85, 0, dt = 1, dp = 1) #0.146211315e-5
sw_gibbs(35.16504, 0, 998.98675) #=0.951294557e5
sw_gibbs(35.16504, 0, 998.98675, dS = 1) #-0.545861581e1
sw_gibbs(35.16504, 0, 998.98675, dt = 1) #0.160551219e2
sw_gibbs(35.16504, 0, 998.98675, dp = 1) #0.933770945e-3
sw_gibbs(35.16504, 0, 998.98675, dS = 1, dp = 1) #-0.640757619e-6
sw_gibbs(35.16504, 0, 998.98675, dt = 1, dp = 1) #0.245708012e-6
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.