Nothing
# This function is very strict.
sanity_dots <- function(model, calling_function = NULL, ...) {
stop_deprecate <- c()
if ("p_adjust" %in% ...names()) stop_deprecate("p_adjust", "inferences()")
if ("transform_post" %in% ...names()) stop_deprecate("transform_post", "transform")
if ("interaction" %in% ...names()) stop_deprecate("interaction", "cross")
if (identical(calling_function, "slopes")) {
if ("comparison" %in% ...names()) stop_deprecate("comparison")
if ("transform" %in% ...names()) stop_deprecate("transform")
if ("cross" %in% ...names()) stop_deprecate("cross")
}
valid <- list()
# mixed effects
me <- c("include_random", "re.form", "allow.new.levels", "random.only")
valid[["merMod"]] <- me
valid[["lmerMod"]] <- me
valid[["glmerMod"]] <- me
valid[["lmerModLmerTest"]] <- me
# bayes
valid[["brmsfit"]] <- c(
"draw_ids",
"incl_autocor",
"nlpar",
"ndraws",
"re_formula",
"allow_new_levels",
"sample_new_levels",
"dpar",
"resp"
)
valid[["brmsfit_multiple"]] <- valid[["brmsfit"]]
# misc
valid[["selection"]] <- c("part") # sampleSelection
valid[["glmmTMB"]] <- c("re.form", "allow.new.levels", "zitype") # glmmTMB
valid[["bam"]] <- c("exclude", "discrete") # mgcv
valid[["gam"]] <- c("exclude", "discrete") # mgcv
valid[["rlmerMod"]] <- c("re.form", "allow.new.levels")
valid[["gamlss"]] <- c("what", "safe") # gamlss
valid[["lme"]] <- c("level") # nlme::lme
valid[["bife"]] <- c("alpha_new", "corrected") # nlme::lme
valid[["process_error"]] <- c("times", "p", "start")
valid[["flexsurvreg"]] <- c("times", "p", "start")
# survival
valid[["survreg"]] <- c("p")
# WeightIt models
valid[["ordinal_weightit"]] <- valid[["multinom_weightit"]] <- "values"
white_list <- c(
"conf.int",
"modeldata",
"internal_call",
"df",
"transform",
"comparison",
"side",
"delta",
"null",
"equivalence",
"draw",
"flag", # internal dev
"variables_grid", # backward compatibility in marginal_means()
"at" # topmodels procast
)
model_class <- class(model)[1]
good <- NULL
if (model_class %in% names(valid)) {
good <- valid[[model_class]]
}
backward_compatibility <- c("conf.level")
good <- c(good, backward_compatibility)
bad <- setdiff(...names(), c(good, white_list))
if (length(bad) > 0) {
if (model_class %in% names(valid)) {
msg <- sprintf(
"These arguments are not known to be supported for models of class `%s`: %s. These arguments are known to be valid: %s. All arguments are still passed to the model-specific prediction function, but users are encouraged to check if the argument is indeed supported by their modeling package. Please file a request on Github if you believe that an unknown argument should be added to the `marginaleffects` white list of known arguments, in order to avoid raising this warning: https://github.com/vincentarelbundock/marginaleffects/issues",
model_class,
toString(bad),
toString(valid[[model_class]])
)
} else {
msg <- sprintf(
"These arguments are not known to be supported for models of class `%s`: %s. All arguments are still passed to the model-specific prediction function, but users are encouraged to check if the argument is indeed supported by their modeling package. Please file a request on Github if you believe that an unknown argument should be added to the `marginaleffects` white list of known arguments, in order to avoid raising this warning: https://github.com/vincentarelbundock/marginaleffects/issues",
model_class,
toString(bad)
)
}
warning(msg, call. = FALSE)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.