Nothing
#' @title Additional Predictor as \link[base]{numeric}
#'
#' @description
#' Additional predictor as \link[base]{numeric}.
#'
#' @param start.model a regression model (e.g., \link[stats]{lm}, \link[stats]{glm}, or \link[survival]{coxph}, etc.)
#'
#' @param x one-sided \link[stats]{formula} to specify
#' the \link[base]{numeric} predictors \eqn{x}'s as the columns of one \link[base]{matrix} column in `data`
#'
#' @param data \link[base]{data.frame}
#'
#' @param mc.cores \link[base]{integer} scalar, see function \link[parallel]{mclapply}
#'
#' @param ... additional parameters, currently of no use
#'
#' @details
#' Function [add_numeric()] treats each additional predictor as a \link[base]{numeric} variable,
#' and \link[stats]{update}s the starting model with each additional predictor.
#'
#' @returns
#' Function [add_numeric()] returns an [add_numeric] object,
#' which is a \link[stats]{listof} objects with an internal class `'add_numeric_'`.
#'
#' @keywords internal
#' @importFrom doParallel registerDoParallel
#' @importFrom foreach foreach `%dopar%`
#' @importFrom parallel mclapply makeCluster stopCluster
#' @importFrom stats update
#' @export
add_numeric <- function(
start.model,
x,
data = eval(start.model$call$data),
mc.cores = getOption('mc.cores'),
...
) {
tmp <- .prepare_add_(start.model = start.model, x = x, data = data)
y <- tmp$y
data_ <- tmp$data # 'data.frame'
x_ <- tmp$x_
xval <- tmp$xval
fn <- \(i) {
x. <- x_[[i]]
data_$x. <- xval[[i]]
m_ <- update(start.model, formula. = . ~ . + x., data = data_)
cf <- m_$coefficients
cf_ <- cf[length(cf)]
attr(x., which = 'effsize') <- if (is.finite(cf_)) unname(cf_) else NA_real_
attr(x., which = 'model') <- m_ # needed for [predict.*]
class(x.) <- c('add_numeric_', class(x.))
return(x.)
}
sq <- x_ |>
seq_along()
switch(
EXPR = .Platform$OS.type, # as of R 4.5, only two responses, 'windows' or 'unix'
unix = {
out <- sq |>
mclapply(mc.cores = mc.cores, FUN = fn) # 'list'
#lapply(FUN = fn) # debugging
}, windows = {
i <- NULL # just to suppress devtools::check NOTE
registerDoParallel(cl = (cl <- makeCluster(spec = mc.cores)))
out <- foreach(i = sq, .options.multicore = list(cores = mc.cores)) %dopar% fn(i)
stopCluster(cl)
})
class(out) <- c('add_numeric', 'add_', 'listof', class(out))
return(invisible(out))
}
# tzh's [predict.*] only needs model call, not the full model!!
#' @title [labels.add_numeric]
#'
#' @param object a [add_numeric] object
#'
#' @param ... ..
#'
#' @returns
#' Function [labels.add_numeric()] returns a \link[base]{character} \link[base]{vector}.
#'
#' @keywords internal
#' @export labels.add_numeric
#' @export
labels.add_numeric <- function(object, ...) {
object |>
vapply(FUN = deparse1, FUN.VALUE = '')
}
#' @title [print.add_numeric]
#'
#' @param x a [add_numeric] object
#'
#' @param ... ..
#'
#' @keywords internal
#' @export print.add_numeric
#' @export
print.add_numeric <- function(x, ...) {
x |>
labels.add_numeric() |>
cat(sep = '\n')
}
#' @title Regression Models with Optimal Dichotomizing Predictors
#'
#' @description
#' Regression models with optimal dichotomizing predictor(s), used either as boolean or continuous predictor(s).
#'
#' @param object an [add_numeric] object
#'
#' @param ... additional parameters of function `predict.add_numeric_`, e.g., `newdata`
#'
#' @returns
#' Function [predict.add_numeric()] returns a \link[stats]{listof} regression models.
#'
#' @keywords internal
#' @name predict_add_numeric
#' @importFrom stats predict
#' @export predict.add_numeric
#' @export
predict.add_numeric <- function(object, ...) {
ret <- object |>
lapply(FUN = predict.add_numeric_, ...)
names(ret) <- object |>
labels.add_numeric()
class(ret) <- 'listof'
return(ret)
}
#' @rdname predict_add_numeric
#' @importFrom stats predict update
#' @export predict.add_numeric_
#' @export
predict.add_numeric_ <- function(object, newdata, ...) {
if ('x.' %in% names(newdata)) stop('do not allow existing name `x.` in `newdata`')
newd <- unclass(newdata)$df
newd$x. <- with(data = newdata, ee = object) # ?spatstat.geom::with.hyperframe
object |>
attr(which = 'model', exact = TRUE) |>
update(data = newd)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.