defaultPrior | R Documentation |
Default conjugate prior specification for Gaussian mixtures.
defaultPrior(data, G, modelName, ...)
data |
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables. |
G |
The number of mixture components. |
modelName |
A character string indicating the model: |
... |
One or more of the following:
|
defaultPrior
is a function whose default is to output the
default prior specification for EM within MCLUST.
Furthermore, defaultPrior
can be used as a template to specify
alternative parameters for a conjugate prior.
A list giving the prior degrees of freedom, scale, shrinkage, and mean.
C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97:611-631.
C. Fraley and A. E. Raftery (2005, revised 2009). Bayesian regularization for normal mixture estimation and model-based clustering. Technical Report, Department of Statistics, University of Washington.
C. Fraley and A. E. Raftery (2007). Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification 24:155-181.
mclustBIC
,
me
,
mstep
,
priorControl
# default prior
irisBIC <- mclustBIC(iris[,-5], prior = priorControl())
summary(irisBIC, iris[,-5])
# equivalent to previous example
irisBIC <- mclustBIC(iris[,-5],
prior = priorControl(functionName = "defaultPrior"))
summary(irisBIC, iris[,-5])
# no prior on the mean; default prior on variance
irisBIC <- mclustBIC(iris[,-5], prior = priorControl(shrinkage = 0))
summary(irisBIC, iris[,-5])
# equivalent to previous example
irisBIC <- mclustBIC(iris[,-5], prior =
priorControl(functionName="defaultPrior", shrinkage=0))
summary(irisBIC, iris[,-5])
defaultPrior( iris[-5], G = 3, modelName = "VVV")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.