mclust-package | R Documentation |
Gaussian finite mixture models estimated via EM algorithm for model-based clustering, classification, and density estimation, including Bayesian regularization and dimension reduction.
For a quick introduction to mclust see the vignette A quick tour of mclust.
See also:
Mclust
for clustering;
MclustDA
for supervised classification;
MclustSSC
for semi-supervised classification;
densityMclust
for density estimation.
Chris Fraley, Adrian Raftery and Luca Scrucca.
Maintainer: Luca Scrucca luca.scrucca@unipg.it
Scrucca L., Fraley C., Murphy T. B. and Raftery A. E. (2023) Model-Based Clustering, Classification, and Density Estimation Using mclust in R. Chapman & Hall/CRC, ISBN: 978-1032234953, https://mclust-org.github.io/book/
Scrucca L., Fop M., Murphy T. B. and Raftery A. E. (2016) mclust 5: clustering, classification and density estimation using Gaussian finite mixture models, The R Journal, 8/1, pp. 289-317.
Fraley C. and Raftery A. E. (2002) Model-based clustering, discriminant analysis and density estimation, Journal of the American Statistical Association, 97/458, pp. 611-631.
# Clustering
mod1 <- Mclust(iris[,1:4])
summary(mod1)
plot(mod1, what = c("BIC", "classification"))
# Classification
data(banknote)
mod2 <- MclustDA(banknote[,2:7], banknote$Status)
summary(mod2)
plot(mod2)
# Density estimation
mod3 <- densityMclust(faithful$waiting)
summary(mod3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.