estepE | R Documentation |
Implements the expectation step in the EM algorithm for a parameterized Gaussian mixture model.
estepE(data, parameters, warn = NULL, ...)
estepV(data, parameters, warn = NULL, ...)
estepEII(data, parameters, warn = NULL, ...)
estepVII(data, parameters, warn = NULL, ...)
estepEEI(data, parameters, warn = NULL, ...)
estepVEI(data, parameters, warn = NULL, ...)
estepEVI(data, parameters, warn = NULL, ...)
estepVVI(data, parameters, warn = NULL, ...)
estepEEE(data, parameters, warn = NULL, ...)
estepEEV(data, parameters, warn = NULL, ...)
estepVEV(data, parameters, warn = NULL, ...)
estepVVV(data, parameters, warn = NULL, ...)
estepEVE(data, parameters, warn = NULL, ...)
estepEVV(data, parameters, warn = NULL, ...)
estepVEE(data, parameters, warn = NULL, ...)
estepVVE(data, parameters, warn = NULL, ...)
data |
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables. |
parameters |
The parameters of the model:
|
warn |
A logical value indicating whether or certain warnings should be issued.
The default is given by |
... |
Catches unused arguments in indirect or list calls via |
A list including the following components:
modelName |
Character string identifying the model. |
z |
A matrix whose |
parameters |
The input parameters. |
loglik |
The logliklihood for the data in the mixture model. |
Attribute |
|
estep
,
em
,
mstep
,
do.call
,
mclustVariance
,
mclust.options
.
msEst <- mstepEII(data = iris[,-5], z = unmap(iris[,5]))
names(msEst)
estepEII(data = iris[,-5], parameters = msEst$parameters)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.