Nothing
context("Model component 'gen'")
set.seed(1, kind="Mersenne-Twister", normal.kind="Inversion")
n <- 1000L
m <- 25L
df <- data.frame(
f = factor(sample(m, n, replace=TRUE))
)
vf <- rnorm(m, sd=0.4)
df$y <- with(df, vf[f] + rnorm(n))
test_that("gaussian model with a single gen component works", {
sampler <- create_sampler(y ~ 1 + gen(factor = ~ f, name="v"), data=df)
expect_identical(names(sampler$mod), c("reg1", "v")) # explicit intercept
sampler <- create_sampler(y ~ gen(factor = ~ f, name="v"), data=df)
expect_identical(names(sampler$mod), "v")
sim <- MCMCsim(sampler, n.chain = 2, n.iter=500, store.all=TRUE, verbose=FALSE)
summ <- summary(sim)
expect_between(summ$v_sigma[, "Mean"], 0.3 * 0.4, 3 * 0.4)
#plot(vf, summ$v[, "Mean"]); abline(0, 1)
})
df$y <- with(df, rbinom(n, 1, prob = 1 / (1 + exp(-vf[f]))))
test_that("binomial model with a single gen component works", {
sampler <- create_sampler(y ~ gen(factor = ~ f, name="v"), data=df, family="binomial")
sim <- MCMCsim(sampler, n.chain = 2, n.iter=500, store.all=TRUE, verbose=FALSE)
summ <- summary(sim)
expect_between(summ$v_sigma[, "Mean"], 0.3 * 0.4, 3 * 0.4)
#plot(vf, summ$v[, "Mean"]); abline(0, 1)
})
df$x <- runif(n)
df$y <- with(df, rbinom(n, 1, prob = 1 / (1 + exp(-(1 + 0.5*df$x + vf[f])))))
test_that("binomial multilevel model with non-zero prior mean in regression component works", {
sampler <- create_sampler(
y ~ reg(~ 1 + x, prior=pr_normal(mean=c(0, 0.5), precision=c(0, 1e6))) +
gen(factor = ~ f, name="v"),
data=df, family="binomial"
)
expect_length(sampler$block[[1L]], 2L)
sim <- MCMCsim(sampler, n.chain = 2, n.iter=500, store.all=TRUE, verbose=FALSE)
summ <- summary(sim)
expect_between(summ$reg1["x", "Mean"], 0.49, 0.51)
expect_between(summ$v_sigma[, "Mean"], 0.3 * 0.4, 3 * 0.4)
#plot(vf, summ$v[, "Mean"]); abline(0, 1)
})
n <- 2000L
m <- 100L
df <- data.frame(
f = factor(sample(m, n, replace=TRUE))
)
vf <- 0.4 * rt(m, df=1)
df$y <- with(df, 2 + vf[f] + rnorm(n))
test_that("model with t-distributed random effects works", {
sampler <- create_sampler(
y ~ 1 + gen(factor = ~ f, priorA=pr_invchisq(df=2), name="v"),
data=df, family="gaussian"
)
expect_equal(sampler$mod$v$priorA$type, "invchisq")
sim <- MCMCsim(sampler, store.all=TRUE, n.chain=2, n.iter=700, verbose=FALSE)
summ <- summary(sim)
#plot(vf, summ$v[, "Mean"]); abline(0, 1)
expect_equal(unname(summ$v[, "Mean"]), vf, tolerance=0.5)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.