R/get_formula.R

Defines functions get_ar_code get_simulate get_formula_str get_all_formulas

Documented in get_all_formulas get_ar_code get_formula_str get_simulate

# ABOUT: These functions build the change point regression model for R and JAGS
# -----------------


#' Call `get_formula_str` for multiple ytypes and paste strings
#'
#' Currently used to differentiate between the JAGS model (use all) and the
#' fit$simulate model (do not include arma).
#'
#' @aliases get_all_formulas
#' @keywords internal
#' @inheritParams get_formula_str
#' @inheritParams mcp
#' @param ytypes A character vector of ytypes to including in model building
#' @return A string with JAGS code.
#' @encoding UTF-8
#' @author Jonas Kristoffer Lindeløv \email{jonas@@lindeloev.dk}
#'
get_all_formulas = function(ST, prior, par_x, ytypes = c("ct", "sigma", "arma")) {
  # Initiate with central tendency
  if ("ct" %in% ytypes) {
    formula_str = get_formula_str(ST, par_x, ytype = "ct", init = TRUE)
  }

  # Add sigma
  if ("sigma" %in% ytypes) {
    if (any(stringr::str_starts(names(prior), "sigma_"))) {
      formula_str = paste0(formula_str, "\n\n",
                           get_formula_str(ST, par_x, ytype = "sigma"))
    }
  }

  # Add arma
  if ("arma" %in% ytypes) {
    all_arma = names(prior)[stringr::str_starts(names(prior), "(^ar|^ma)[0-9]")]  # All priors starting with ar[number] or ma[number]
    arma_bases = unique(sub("*([0-9]+)_.*$", "\\1", all_arma))  # extract these starts
    for (arma_base in arma_bases) {
      formula_str = paste0(formula_str, "\n\n",
                           get_formula_str(ST, par_x, ytype = arma_base))
    }
  }

  # Return
  return(formula_str)
}


#' Build an R formula (as string) given a segment table (ST)
#'
#' You will need to replace PAR_X for whatever your x-axis observation column
#' is called. In JAGS typically `x[i_]`. In R just `x`.
#'
#' @aliases get_formula_str
#' @keywords internal
#' @inheritParams mcp
#' @param ST Tibble. Returned by `get_segment_table`.
#' @param ytype One of "ct" (central tendency), "sigma", "ar1" (or another order), or "ma1" (or another order)
#' @param init TRUE/FALSE. Set to TRUE for the first call. Adds segment-relative
#'   X-codings and verbose commenting of one formula
#' @return A string with JAGS code.
#' @encoding UTF-8
#' @author Jonas Kristoffer Lindeløv \email{jonas@@lindeloev.dk}
#'
get_formula_str = function(ST, par_x, ytype = "ct", init = FALSE) {
  # Build this! Start empty...
  formula_str = ""

  ############
  # Initiate #
  ############
  # Optionally add X-helpers which code the X relative to the start of each segment.
  # Used to compute slopes so that they start in the beginning of each segment.
  if (init == TRUE) {
    for (i in seq_len(nrow(ST))) {
      S = ST[i, ]
      segment_start = ifelse(i > 1, yes = paste0(" - ", S$cp_code_form, ""), no = "")  #
      segment_end = ifelse(i < nrow(ST), yes = paste0(ST$cp_code_form[i + 1], ""), no = paste0("cp_", i))  # infinite if last segment.

      formula_str = paste0(formula_str, "\nX_", i, "_[i_] = min(", par_x, "[i_], ", segment_end, ")", segment_start)
    }
  }

  for (i in seq_len(nrow(ST))) {
    #################################
    # GET ST COLUMNS FOR THIS YTYPE #
    #################################
    # Extract int, slope_table, and slope_code from ST given ytype.
    # This is possible since the generated formula works the same for all of them.
    # Programmer's note: The code below is quite repetitive, but I found no simpler solutions.
    S = ST[i, ]
    if (ytype == "ct") {
      int = S$ct_int[[1]]
      slope_table = S$ct_slope[[1]]
      slope_code = S$ct_code[[1]]
    } else if (ytype == "sigma") {
      int = S$sigma_int[[1]]
      slope_table = S$sigma_slope[[1]]
      slope_code = S$sigma_code[[1]]
    } else if (stringr::str_starts(ytype, "ma")) {
      # Moving average: more involved
      ma_order = get_arma_order(ytype)  # e.g., "ar12" --> 12

      # Get int (intercept)
      S_int_order = length(S$ma_int[[1]])  # How many orders are recorded in the segment table
      if (ma_order <= S_int_order) {
        int = S$ma_int[[1]][[ma_order]]
      } else {
        int = NA
      }

      # Get slope
      S_slope_order = length(S$ma_slope[[1]])  # How many orders are recorded in the segment table
      if (ma_order <= S_slope_order) {
        slope_table = S$ma_slope[[1]][[ma_order]]
        slope_code = S$ma_code[[1]][[ma_order]]
      } else {
        slope_table = NA
        slope_code = NA
      }
    } else if (stringr::str_starts(ytype, "ar")) {
      # Autoregressive: more involved
      ar_order = get_arma_order(ytype)  # e.g., "ar12" --> 12

      # Get int (intercept)
      S_int_order = length(S$ar_int[[1]])  # How many orders are recorded in the segment table
      if (ar_order <= S_int_order) {
        int = S$ar_int[[1]][[ar_order]]
      } else {
        int = NA
      }

      # Get slope
      S_slope_order = length(S$ar_slope[[1]])  # How many orders are recorded in the segment table
      if (ar_order <= S_slope_order) {
        slope_table = S$ar_slope[[1]][[ar_order]]
        slope_code = S$ar_code[[1]][[ar_order]]
      } else {
        slope_table = NA
        slope_code = NA
      }
    } else {
      stop("Got wrong argument for ytype: ", ytype, ". Report an issue on GitHub if you see this.")
    }


    ########################
    # BUILD FORMULA STRING #
    ########################

    # Start formula string with an informative comment
    if (i == 1) {
      if (ytype == "ct") {
        formula_str = paste0(formula_str, "\n\n# Fitted value\ny_[i_] = \n")
      } else if (ytype == "sigma") {
        formula_str = paste0(formula_str, "# Fitted standard deviation\nsigma_[i_] = max(0, \n")  # Add max(0, [formula]) to prevent modeling negative sigmas. JAGS uses precision = 1 / sigma^2 which yields positive precisions for negative sigmas.
      } else if (stringr::str_detect(ytype, "ar[0-9]+")) {
        formula_str = paste0(formula_str, "# Autoregressive coefficient for all AR(", ar_order,")\n", ytype, "_[i_] = \n")
      } else if (stringr::str_detect(ytype, "ma[0-9]+")) {
        formula_str = paste0(formula_str, "# Moving Average: MA(", ma_order, ")\n", ytype, "_[i_] = \n")
      }
    }

    # FUTURE_REL will sometimes be replaced by a less-than indicator (ind_past).
    # cp_code_form includes varying effects
    ind_this = paste0("  (", par_x, "[i_] >= ", S$cp_code_form, ") * FUTURE_REL")
    ind_past = paste0("(", par_x, "[i_] < ", S$cp_code_form, ") * ")

    # Begin building formula
    if (init == TRUE) {  # Verbose for mean formula
      formula_str = paste0(formula_str, "\n  # Segment ", i, ": ", S$form, "\n")
    }


    # Add intercept
    if (!all(is.na(int))) {
      # For absolute intercepts, "remove" earlier stuff affecting the intercept
      # Multiply it with zero from this change point and on
      if (int$rel == FALSE) {
        formula_str = gsub("FUTURE_REL", ind_past, formula_str)
      }

      # Add intercept with indicator
      formula_str = paste0(formula_str, ind_this, int$name, " + \n")
    }

    # Add slope
    if (!all(is.na(slope_table))) {
      formula_str = paste0(formula_str, ind_this, slope_code, " + \n")
    }

    # If this is just a plateau (~ 0), i.e., the absence of intercept, slope, and varying effects
    if (init == TRUE) {  # Verbose for mean formula. Not for sigma.
      if (all(is.na(int)) && all(is.na(slope_table))) {
        formula_str = paste0(formula_str, "  0 + \n")
      }
    }

    # Finish up formula_str for the last segment
    if (i == nrow(ST)) {
      formula_str = substr(formula_str, 1, nchar(formula_str) - 3)
    }
  }

  # Remove all "unrealized" FUTURE_REL
  formula_str = gsub("FUTURE_REL", "", formula_str)

  if (ytype == "sigma") {
    formula_str = paste0(formula_str, ")")  # End max() statement
  }

  # Return
  formula_str
}


#' Turn formula_str into a proper R function
#'
#' @aliases get_simulate
#' @keywords internal
#' @inheritParams mcp
#' @param formula_str string. Returned by `get_formula`.
#' @param par_trials String. For binomial models: name of trials column.
#' @param pars_pop List of population parameters which the user must provide.
#' @param pars_varying List varying parameters. They will default to zero
#'   (optional for the user).
#' @param nsegments Positive integer. Number of segments, typically `nrow(ST)`.
#' @return A string with R code for the fit$simulate() function corresponding to the model.
#' @encoding UTF-8
#' @author Jonas Kristoffer Lindeløv \email{jonas@@lindeloev.dk}
#'
get_simulate = function(formula_str, pars, nsegments, family) {
  # First some substitutions
  formula_func = gsub("\\[i_\\]", "", formula_str)  # No explicit indexing needed for R function
  formula_func = gsub("min\\(", "pmin\\(", formula_func)  # vectorized min
  formula_func = gsub("max\\(", "pmax\\(", formula_func)  # vectorized max
  for (i in seq_len(nsegments))
    formula_func = gsub(paste0("CP_", i, "_INDEX"), "", formula_func)  # Use vector of data

  # Remove hyperparameter on varying effects from pars$reg since it is not used for simulation
  pars$reg = pars$reg[!stringr::str_ends(pars$reg, "_sd")]

  # Helper
  is_arma = length(pars$arma) > 0

  # Allowed values for argument which_y
  allowed_which_y = c("ct")
  if (is_arma == TRUE)
    allowed_which_y = c(allowed_which_y, "ar[0-9]+")
  if (length(pars$sigma) > 0)
    allowed_which_y = c(allowed_which_y, "sigma")

  # Helper to build the list of simulate() arguments. Simply comma separates correctly
  args_if_exists = function(args, postfix = "") {
    if(length(args) > 0) {
      args_str = paste0(args, postfix, collapse = ", ")
      return(paste0(args_str, ", "))
    }
    else {
      return("")
    }
  }

  # Now build the function R code
  # x_and_trials handles the special case that binomial "trials" is also used as a predictor.
  x_and_trials = ifelse(is.null(pars$trials),
                        yes = pars$x,  # just the x
                        no = paste0(unique(c(pars$x, pars$trials)), collapse = ", "))  # x and N, if they differ.
  out = paste0("
function(",
               x_and_trials, ", ",
               args_if_exists(pars$reg),
               args_if_exists(pars$sigma),
               args_if_exists(pars$arma),
               args_if_exists(pars$varying, " = 0"),
               ifelse(is_arma, paste0("\n  ", pars$y, " = NULL, \n  .ydata = NULL, "), ""), "
  type = 'predict',
  quantile = FALSE,
  rate = FALSE,
  which_y = 'ct',
  add_attr = TRUE,
  arma = TRUE,
  scale = 'response',
  ...) {

  # Asserts
  mcp:::assert_value(type, allowed = c('predict', 'fitted'))
  mcp:::assert_logical(quantile)
  mcp:::assert_logical(add_attr)
  mcp:::assert_logical(arma)
  mcp:::assert_value(scale, allowed = c('response', 'linear'))

  if (scale == 'linear' && type == 'predict')
    stop(\"Only `type = 'fitted'` is meaningful when `scale = 'linear'`\")

  if (stringr::str_detect(which_y, '", paste0(allowed_which_y, collapse = "|"), "') == FALSE)
    stop(which_y, \" is not a parameter class in this model. It should be one of '", paste0(allowed_which_y, collapse = "', '"), "'\")

  # Use this for return to add simulation parameters to the output
  args_names = as.list(match.call())  # Which arguments this function was called with
  all_values = c(as.list(environment()), list(...))  # all vars and values in env
  add_simulated = function(x) {
    # Do not add simulated attribute
    if (add_attr == FALSE) {
      return(x)
    } else {
      # Add it!
      args_values = all_values[names(all_values) %in% names(args_names)]  # Only those coming from call
      args_values[['", pars$x ,"']] = NULL  # Remove x
      ", ifelse(length(pars$trials) > 0, yes = paste0("args_values[['", pars$trials, "']] = NULL  # Remove trials"), no = ""), "
      attr(x, 'simulated') = args_values  # Set as attribute
      return(x)
    }
  }

  # Helpers to simplify making the code for this function
  cp_0 = -Inf
  cp_", nsegments, " = Inf

  # This is where it happens: the change point indicator formula
  ", formula_func, "

  # Optionally transform
  if (scale == 'response') {
    y_ = ", family$linkinv_r, "(y_)
  }
  ")

  # Return depends on family
  # GAUSSIAN ------------------------------
  if (family$family == "gaussian") {
    # If ARMA, build resid_ and return with that
    if (is_arma) {
      out = paste0(out, "

  if (arma == TRUE) {
    # Simulate AR residuals",
        get_ar_code(
         ar_order = get_arma_order(pars$arma),
         family = family,
         is_R = TRUE,
         xvar = pars$x,
         yvar = pars$y
        ), "
  }
  ")
    }

    out = paste0(out, "
  # Use which_y to return something else than ct.
  # First, rename to internal parameter name
  if (which_y == 'sigma' || stringr::str_detect(which_y, '^ar([0-9]+)$'))
    which_y = paste0(which_y, '_')

  if (which_y != 'ct') {
    if (!exists(which_y))
      stop(which_y, \" was not found. Try one of 'sigma', 'ar1', etc.\")
    if (type != 'fitted')
      stop(\"`type = 'fitted'` is the only option when `which_y != 'ct'`\")

    return(add_simulated(get(which_y)))
  }")

    # If fitted or no data
    out = paste0(out, "
  if (type == 'fitted') {
    return(add_simulated(y_))
  } else if (type == 'predict') {
    if (any(", family$linkinv_r, "(sigma_) < 0))
      stop(\"Modelled negative sigma. First detected at ", pars$x, " = \", min(", pars$x, "[", family$linkinv_r, "(sigma_) < 0]))")

    # Complex code if ARMA. Simple if not. resid_sigma_ was generated from sigma_ so no need to do an extra rnorm().
    if (is_arma == TRUE) {
      out = paste0(out, "
    if (arma == TRUE) {
      return(add_simulated(", family$linkinv_r, "(", family$link_r, "(y_) + resid_sigma_)))
    } else {
      return(add_simulated(", family$linkinv_r, "(", family$link_r, "(y_) + rnorm(length(y_), 0, sigma_))))
    }")
    } else if (is_arma == FALSE) {
      out = paste0(out, "
    return(add_simulated(rnorm(length(y_), y_, sigma_)))")
    }

    out = paste0(out, "
  }
  ")

    # Attempt at returning quantiles directly
    # return(add_simulated(qnorm(length(y_), y_, sigma_)))
    # if (is.numeric(quantile)) {
    #   add_simulated(qnorm(quantile, y_, sigma_))
    # } else if (quantile == FALSE) {
    #   add_simulated(rnorm(length(y_), y_, sigma_))
    # } else {
    #   stop(\"Invalid `quantile` argument to simulate()\")
    # }

    # OTHER FAMILIES ---------------------
  } else if (family$family == "binomial") {
    out = paste0(out, "
  if (type == 'predict') {
    if (rate == FALSE) return(add_simulated(rbinom(length(y_), ", pars$trials, ", y_)))
    if (rate == TRUE)  return(add_simulated(rbinom(length(y_), ", pars$trials, ", y_) / ", pars$trials, "))
  } else if (type == 'fitted') {
    if (rate == FALSE) return(add_simulated(", pars$trials, " * y_))
    if (rate == TRUE)  return(add_simulated(y_))
  }")
  } else if (family$family == "bernoulli") {
    out = paste0(out, "
  if (type == 'predict') return(add_simulated(rbinom(length(y_), 1, y_)))
  if (type == 'fitted') return(add_simulated(y_))")
  } else if (family$family == "poisson") {
    out = paste0(out, "
  if (type == 'predict') {
    if ((scale == 'response' && any(y_ > 2146275819)) || (scale == 'linear' && any(", family$linkinv_r, "(y_) > 2146275819)))
      stop(\"Modelled extremely large value: ", family$linkinv_r, "(", pars$y, ") > 2146275819.\")
    return(add_simulated(rpois(length(y_), y_)))
  } else if (type == 'fitted') {
    return(add_simulated(y_))
  }")
  } else if (family$family == "exponential") {
    out = paste0(out, "
  if (type == 'predict') return(add_simulated(rexp(length(y_), y_)))
  if (type == 'fitted') return(add_simulated(1 / y_))
    ")
  }

  out = paste0(out, "
}")

  # Return function
  eval(parse(text = out))
}



#' Gets code for ARMA terms, resulting in a "resid_"
#'
#' Developer note: Ensuring that this can be used in both simulate() and JAGS
#' got quite messy with a lot of if-statements. It works but some refactoring
#' may be good in the future.
#'
#' @aliases get_ar_code
#' @keywords internal
#' @param ar_order Positive integer. The order of ARMA
#' @param family An mcpfamily object
#' @param is_R Bool. Is this R code (TRUE) or JAGS code (FALSE)?
#' @return String with JAGS code for AR.
#' @encoding UTF-8
#' @author Jonas Kristoffer Lindeløv \email{jonas@@lindeloev.dk}
#'
get_ar_code = function(ar_order, family, is_R, xvar, yvar = NA) {
  mm = "\n"

  ##################
  # FOR SIMULATE() #
  ##################
  if (is_R) {
    # mm is the code string to be populated below
    mm = paste0("
    # Hack to make simulate() callable with a fixed yvar name. Used internally in mcp.
    if(!is.null(.ydata))
      ", yvar, " = .ydata
    ")

# For simulated ydata:
mm = paste0(mm, "
    # resid_ is the observed residual from y_
    # resid_ is split into the innovation and AR() part. So resid_ = resid_arma_ + resid_sigma_
    resid_sigma_ = rnorm(length(", xvar, "), 0, sigma_)
    if (all(is.null(", yvar, "))) {
      message(\"Generating residuals for AR(N) model since the response column/argument '", yvar, "' was not provided.\")
      ar0_ = sigma_[1:", ar_order, "] * 0 + 1
      resid_abs_ = numeric(length(", xvar, "))")

    # For data points lower than the full order
    for (i in seq_len(ar_order)) {
      mm = paste0(mm, "\n      resid_abs_[", i, "] = ",
                  paste0("ar", 0:(i-1), "_[", i, " - ", 0:(i-1), "] * resid_sigma_[", i, " - ", 0:(i-1), "]", collapse = " + "))
    }

    mm = paste0(mm, "
      for (i_ in ", ar_order + 1, ":length(", xvar, "))
        resid_abs_[i_] = resid_sigma_[i_] + ", paste0("ar", seq_len(ar_order), "_[i_] * resid_abs_[i_ - ", seq_len(ar_order), "]", collapse = " + "), "
      ")

    # For given ydata:
    mm = paste0(mm, "

      resid_arma_ = resid_abs_ - resid_sigma_
    } else {
      # Got ydata.
      mcp:::assert_numeric(", yvar, ")
      resid_abs_ = ", yvar, " - y_
      resid_arma_ = numeric(length(", xvar, "))
      resid_arma_ = ", paste0("ar", seq_len(ar_order), "_ * dplyr::lag(resid_abs_, ", seq_len(ar_order), ")", collapse = " + "), "
      resid_arma_[seq_len(", ar_order, ")] = 0  # replace NA
      # resid_sigma_ = resid_abs_ - resid_arma_  # Outcommented because it's deterministic in this parameterization (always sums to the observed data exactly)
    }

    y_ = y_ + resid_arma_
    ")
  } else {


    #################
    # FOR JAGS CODE #
    #################
    # For data points lower than the full order
    mm = paste0(mm, "
  # Apply autoregression to the residuals
  resid_arma_[1] = 0")

    # For data points lower than the full order
    if (ar_order >= 2) {
      for (i in 2:ar_order) {
        mm = paste0(mm, "
  resid_arma_[", i, "] = ", paste0("ar", 1:(i-1), "_[", i, " - ", 1:(i-1), "] * resid_abs_[", i, " - ", 1:(i-1), "]", collapse = " +\n              "))
      }
    }

    # For full order
    mm = paste0(mm, "
  for (i_ in ", ar_order + 1, ":length(", xvar, ")) {
    resid_arma_[i_] = 0")
    for (i in seq_len(ar_order)) {
      mm = paste0(mm, " + \n      ar", i, "_[i_] * resid_abs_[i_ - ", i, "]")
    }

    # Finish up
    mm = paste0(mm, "
  }")
  }

  return(mm)
}

Try the mcp package in your browser

Any scripts or data that you put into this service are public.

mcp documentation built on Aug. 3, 2020, 5:07 p.m.