Nothing
plot.fda <-
function (x, data, coords = c(1, 2), group = c("true",
"predicted"), colors, pch, mcolors = colors, mpch,
pcex = 0.5, mcex = 2.5, ...)
{
object <- x # generic/method
group <- match.arg(group)
if (missing(data)) {
vars <- predict(object, type = "var")
g <- predict(object)
group <- "predict"
}
else {
if(group=="predicted"){
vars <- predict(object, data, type = "var")
g <- predict(object, data)
}
else{
ff <- terms(object)
attr(ff, "intercept") <- 0
m <- model.frame(ff, data)
x <- model.matrix(ff, m)
vars <- predict(object, x, type = "var")
g <- model.extract(m, "response")
}
}
means <- object$means
if(ncol(means)==1)stop("Only one canonical variate; plot requires at least two")
g <- as.factor(g)
cc <- as.numeric(g)
np <- seq(levels(g))
mit.colors=c(Orange = "#FF9233", Cyan = "#29D0D0", Lt.Green = "#81C57A",
Dk.Gray = "#575757", Red = "#AD2323", Blue = "#2A4BD7", Green = "#1D6914",
Brown = "#814A19", Purple = "#8126C0", Lt.Gray = "#A0A0A0", Yellow = "#FFEE33",
Pink = "#FFCDF3")
if (missing(colors)) colors <- mit.colors
colors <- rep(colors, length = length(np))
if (missing(pch))
pch <- paste(np)
else pch <- rep(paste(pch), length = length(np))
mcolors <- rep(mcolors, length = length(np))
if (missing(mpch))
mpch <- pch
else mpch <- rep(paste(mpch), length = length(np))
assign <- object$assign
if (is.null(assign))
assign <- split(seq(np), seq(np))
if (!is.matrix(coords)) {
coords <- matrix(coords, length(coords), length(coords))
tt <- lower.tri(coords)
coords <- cbind(t(coords)[tt], coords[tt])
}
for (ii in seq(nrow(coords))) {
coord.pair <- coords[ii, ]
plot(rbind(vars[, coord.pair], means[, coord.pair]),
..., type = "n", xlab = paste("Canonical Var",
coord.pair[1]), ylab = paste("Canonical Var",
coord.pair[2]), main = paste("Discriminant Plot for",
group, "classes"))
for (i in np) {
which <- cc == i
if (any(which))
points(vars[which, coord.pair, drop = FALSE], col = colors[i],
pch = pch[i], cex = pcex)
points(means[assign[[i]], coord.pair, drop = FALSE],
col = mcolors[i], pch = 1, cex = mcex)
points(means[assign[[i]], coord.pair, drop = FALSE],
col = mcolors[i], pch = mpch[i], cex = mcex/2)
}
}
invisible()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.