dat.assink2016 | R Documentation |
Results from 17 studies on the association between recidivism and mental health in delinquent juveniles.
dat.assink2016
The data frame contains the following columns:
study | numeric | study id number |
esid | numeric | effect size within study id number |
id | numeric | row id number |
yi | numeric | standardized mean difference |
vi | numeric | corresponding sampling variance |
pubstatus | numeric | published study (0 = no; 1 = yes) |
year | numeric | publication year of the study (approximately mean centered) |
deltype | character | type of delinquent behavior in which juveniles could have recidivated (either general, overt, or covert) |
The studies included in this dataset (which is a subset of the data used in Assink et al., 2015) compared the difference in recidivism between delinquent juveniles with a mental health disorder and a comparison group of juveniles without a mental health disorder. Since studies differed in the way recidivism was defined and assessed, results are given in terms of standardized mean differences, with positive values indicating a higher prevalence of recidivism in the group of juveniles with a mental health disorder.
Multiple effect size estimates could be extracted from most studies (e.g., for different delinquent behaviors in which juveniles could have recidivated), necessitating the use of appropriate models/methods for the analysis. Assink and Wibbelink (2016) illustrate the use of multilevel meta-analysis models for this purpose.
psychology, criminology, standardized mean differences, multilevel models, cluster-robust inference
The year
variable is not constant within study 3, as this study refers to two different publications using the same data.
Wolfgang Viechtbauer, wvb@metafor-project.org, https://www.metafor-project.org
Assink, M., & Wibbelink, C. J. M. (2016). Fitting three-level meta-analytic models in R: A step-by-step tutorial. The Quantitative Methods for Psychology, 12(3), 154–174. https://doi.org/10.20982/tqmp.12.3.p154
Assink, M., van der Put, C. E., Hoeve, M., de Vries, S. L. A., Stams, G. J. J. M., & Oort, F. J. (2015). Risk factors for persistent delinquent behavior among juveniles: A meta-analytic review. Clinical Psychology Review, 42, 47–61. https://doi.org/10.1016/j.cpr.2015.08.002
### copy data into 'dat' and examine data dat <- dat.assink2016 head(dat, 9) ## Not run: ### load metafor package library(metafor) ### fit multilevel model res <- rma.mv(yi, vi, random = ~ 1 | study/esid, data=dat) res ### use cluster-robust inference methods robust(res, cluster=study) ### LRTs for the variance components res0 <- rma.mv(yi, vi, random = ~ 1 | study/esid, data=dat, sigma2=c(0,NA)) anova(res0, res) res0 <- rma.mv(yi, vi, random = ~ 1 | study/esid, data=dat, sigma2=c(NA,0)) anova(res0, res) ### examine some potential moderators via meta-regression rma.mv(yi, vi, mods = ~ pubstatus, random = ~ 1 | study/esid, data=dat) rma.mv(yi, vi, mods = ~ year, random = ~ 1 | study/esid, data=dat) dat$deltype <- relevel(factor(dat$deltype), ref="general") rma.mv(yi, vi, mods = ~ deltype, random = ~ 1 | study/esid, data=dat) rma.mv(yi, vi, mods = ~ year + deltype, random = ~ 1 | study/esid, data=dat) ### assume that the effect sizes within studies are correlated with rho=0.6 V <- vcalc(vi, cluster=study, obs=esid, data=dat, rho=0.6) round(V[dat$study %in% c(1,2), dat$study %in% c(1,2)], 4) ### fit multilevel model using this approximate V matrix res <- rma.mv(yi, V, random = ~ 1 | study/esid, data=dat) res ### use cluster-robust inference methods robust(res, cluster=study) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.