dat.assink2016: Studies on the Association between Recidivism and Mental...

dat.assink2016R Documentation

Studies on the Association between Recidivism and Mental Health

Description

Results from 17 studies on the association between recidivism and mental health in delinquent juveniles.

Usage

dat.assink2016

Format

The data frame contains the following columns:

study numeric study id number
esid numeric effect size within study id number
id numeric row id number
yi numeric standardized mean difference
vi numeric corresponding sampling variance
pubstatus numeric published study (0 = no; 1 = yes)
year numeric publication year of the study (approximately mean centered)
deltype character type of delinquent behavior in which juveniles could have recidivated (either general, overt, or covert)

Details

The studies included in this dataset (which is a subset of the data used in Assink et al., 2015) compared the difference in recidivism between delinquent juveniles with a mental health disorder and a comparison group of juveniles without a mental health disorder. Since studies differed in the way recidivism was defined and assessed, results are given in terms of standardized mean differences, with positive values indicating a higher prevalence of recidivism in the group of juveniles with a mental health disorder.

Multiple effect size estimates could be extracted from most studies (e.g., for different delinquent behaviors in which juveniles could have recidivated), necessitating the use of appropriate models/methods for the analysis. Assink and Wibbelink (2016) illustrate the use of multilevel meta-analysis models for this purpose.

Concepts

psychology, criminology, standardized mean differences, multilevel models, cluster-robust inference

Note

The year variable is not constant within study 3, as this study refers to two different publications using the same data.

Author(s)

Wolfgang Viechtbauer, wvb@metafor-project.org, https://www.metafor-project.org

Source

Assink, M., & Wibbelink, C. J. M. (2016). Fitting three-level meta-analytic models in R: A step-by-step tutorial. The Quantitative Methods for Psychology, 12(3), 154–174. https://doi.org/10.20982/tqmp.12.3.p154

References

Assink, M., van der Put, C. E., Hoeve, M., de Vries, S. L. A., Stams, G. J. J. M., & Oort, F. J. (2015). Risk factors for persistent delinquent behavior among juveniles: A meta-analytic review. Clinical Psychology Review, 42, 47–61. https://doi.org/10.1016/j.cpr.2015.08.002

Examples

### copy data into 'dat' and examine data
dat <- dat.assink2016
head(dat, 9)

## Not run: 

### load metafor package
library(metafor)

### fit multilevel model
res <- rma.mv(yi, vi, random = ~ 1 | study/esid, data=dat)
res

### use cluster-robust inference methods
robust(res, cluster=study)

### LRTs for the variance components
res0 <- rma.mv(yi, vi, random = ~ 1 | study/esid, data=dat, sigma2=c(0,NA))
anova(res0, res)
res0 <- rma.mv(yi, vi, random = ~ 1 | study/esid, data=dat, sigma2=c(NA,0))
anova(res0, res)

### examine some potential moderators via meta-regression
rma.mv(yi, vi, mods = ~ pubstatus, random = ~ 1 | study/esid, data=dat)
rma.mv(yi, vi, mods = ~ year, random = ~ 1 | study/esid, data=dat)
dat$deltype <- relevel(factor(dat$deltype), ref="general")
rma.mv(yi, vi, mods = ~ deltype, random = ~ 1 | study/esid, data=dat)
rma.mv(yi, vi, mods = ~ year + deltype, random = ~ 1 | study/esid, data=dat)

### assume that the effect sizes within studies are correlated with rho=0.6
V <- vcalc(vi, cluster=study, obs=esid, data=dat, rho=0.6)
round(V[dat$study %in% c(1,2), dat$study %in% c(1,2)], 4)

### fit multilevel model using this approximate V matrix
res <- rma.mv(yi, V, random = ~ 1 | study/esid, data=dat)
res

### use cluster-robust inference methods
robust(res, cluster=study)


## End(Not run)

metadat documentation built on April 6, 2022, 5:08 p.m.