dat.fine1993: Studies on Radiation Therapy with or without Adjuvant...

dat.fine1993R Documentation

Studies on Radiation Therapy with or without Adjuvant Chemotherapy in Patients with Malignant Gliomas

Description

Results from 17 trials comparing post-operative radiation therapy with and without adjuvant chemotherapy in patients with malignant gliomas.

Usage

dat.fine1993

Format

The data frame contains the following columns:

study numeric study number
nei numeric sample size in the experimental group receiving radiotherapy plus adjuvant chemotherapy
nci numeric sample size in the control group receiving radiotherapy alone
e1i numeric number of survivors at 6 months in the experimental group
c1i numeric number of survivors at 6 months in the control group
e2i numeric number of survivors at 12 months in the experimental group
c2i numeric number of survivors at 12 months in the control group
e3i numeric number of survivors at 18 months in the experimental group
c3i numeric number of survivors at 18 months in the control group
e4i numeric number of survivors at 24 months in the experimental group
c4i numeric number of survivors at 24 months in the control group

Details

The 17 trials report the post-operative survival of patients with malignant gliomas receiving either radiation therapy with adjuvant chemotherapy or radiation therapy alone. Survival was assessed at 6, 12, 18, and 24 months in all but one study (which assessed survival only at 12 and at 24 months).

The data were reconstructed by Trikalinos and Olkin (2012) based on Table 2 in Fine et al. (1993) and Table 3 in Dear (1994). The data can be used to illustrate how a meta-analysis can be conducted of effect sizes reported at multiple time points using a multivariate model.

Concepts

medicine, oncology, odds ratios, longitudinal models

Author(s)

Wolfgang Viechtbauer, wvb@metafor-project.org, https://www.metafor-project.org

Source

Dear, K. B. G. (1994). Iterative generalized least squares for meta-analysis of survival data at multiple times. Biometrics, 50(4), 989–1002. https://doi.org/10.2307/2533438

Trikalinos, T. A., & Olkin, I. (2012). Meta-analysis of effect sizes reported at multiple time points: A multivariate approach. Clinical Trials, 9(5), 610–620. https://doi.org/10.1177/1740774512453218

References

Fine, H. A., Dear, K. B., Loeffler, J. S., Black, P. M., & Canellos, G. P. (1993). Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer, 71(8), 2585–2597. https://doi.org/10.1002/1097-0142(19930415)71:8<2585::aid-cncr2820710825>3.0.co;2-s

Examples

### copy data into 'dat' and examine data
dat <- dat.fine1993
dat

## Not run: 

### load metafor package
library(metafor)

### calculate log(ORs) and sampling variances for each time point
dat <- escalc(measure="OR", ai=e1i, n1i=nei, ci=c1i, n2i=nci, data=dat, var.names=c("y1i","v1i"))
dat <- escalc(measure="OR", ai=e2i, n1i=nei, ci=c2i, n2i=nci, data=dat, var.names=c("y2i","v2i"))
dat <- escalc(measure="OR", ai=e3i, n1i=nei, ci=c3i, n2i=nci, data=dat, var.names=c("y3i","v3i"))
dat <- escalc(measure="OR", ai=e4i, n1i=nei, ci=c4i, n2i=nci, data=dat, var.names=c("y4i","v4i"))

### calculate the covariances (equations in Appendix of Trikalinos & Olkin, 2012)
dat$v12i <- with(dat, nei / (e1i * (nei - e2i)) + nci / (c1i * (nci - c2i)))
dat$v13i <- with(dat, nei / (e1i * (nei - e3i)) + nci / (c1i * (nci - c3i)))
dat$v14i <- with(dat, nei / (e1i * (nei - e4i)) + nci / (c1i * (nci - c4i)))
dat$v23i <- with(dat, nei / (e2i * (nei - e3i)) + nci / (c2i * (nci - c3i)))
dat$v24i <- with(dat, nei / (e2i * (nei - e4i)) + nci / (c2i * (nci - c4i)))
dat$v34i <- with(dat, nei / (e3i * (nei - e4i)) + nci / (c3i * (nci - c4i)))

### create dataset in long format
dat.long <- data.frame(study=rep(1:nrow(dat), each=4), time=1:4,
                       yi=c(t(dat[c("y1i","y2i","y3i","y4i")])),
                       vi=c(t(dat[c("v1i","v2i","v3i","v4i")])))

### var-cov matrices of the sudies
V <- lapply(split(dat, dat$study),
            function(x) matrix(c( x$v1i, x$v12i, x$v13i, x$v14i,
                                 x$v12i,  x$v2i, x$v23i, x$v24i,
                                 x$v13i, x$v23i,  x$v3i, x$v34i,
                                 x$v14i, x$v24i, x$v34i,  x$v4i), nrow=4, ncol=4, byrow=TRUE))

### remove rows for the missing time points in study 17
dat.long <- na.omit(dat.long)

### remove corresponding rows/columns from var-cov matrix
V[[17]] <- V[[17]][c(2,4),c(2,4)]

### make a copy of V
Vc <- V

### replace any (near) singular var-cov matrices with ridge corrected versions
repl.Vi <- function(Vi) {
   res <- eigen(Vi)
   if (any(res$values <= .08)) {
      round(res$vectors %*% diag(res$values + .08) %*% t(res$vectors), 12)
   } else {
      Vi
   }
}
Vc <- lapply(Vc, repl.Vi)

### do not correct var-cov matrix of study 17
Vc[[17]] <- V[[17]]

### construct block diagonal matrix
Vc <- bldiag(Vc)

### multivariate fixed-effects model
res <- rma.mv(yi, Vc, mods = ~ factor(time) - 1, method="FE", data=dat.long)
print(res, digits=3)

### multivariate random-effects model with heteroscedastic AR(1) structure for the true effects
res <- rma.mv(yi, Vc, mods = ~ factor(time) - 1, random = ~ time | study,
              struct="HAR", data=dat.long, control=list(optimizer="hjk"))
print(res, digits=3)

### profile the variance components
par(mfrow=c(2,2))
profile(res, tau2=1, xlim=c( 0,.2))
profile(res, tau2=2, xlim=c( 0,.2))
profile(res, tau2=3, xlim=c( 0,.2))
profile(res, tau2=4, xlim=c(.1,.3))

### profile the autocorrelation coefficient
par(mfrow=c(1,1))
profile(res, rho=1)


## End(Not run)

metadat documentation built on April 6, 2022, 5:08 p.m.