dat.hasselblad1998: Studies on the Effectiveness of Counseling for Smoking...

dat.hasselblad1998R Documentation

Studies on the Effectiveness of Counseling for Smoking Cessation

Description

Results from 24 studies on the effectiveness of various counseling types for smoking cessation.

Usage

dat.hasselblad1998

Format

The data frame contains the following columns:

id numeric id number for each treatment arm
study numeric study id number
authors character study author(s)
year numeric publication year
trt character intervention group
xi numeric number of individuals abstinent
ni numeric number of individuals in group

Details

The dataset includes the results from 24 studies on the effectiveness of various counseling types for smoking cessation (i.e., self-help, individual counseling, group counseling, and no contact). The dataset indicates the total number of individuals within each study arm and the number that were abstinent from 6 to 12 months. The majority of the studies compared two interventions types against each other, while 2 studies compared three types against each other simultaneously.

The data can be used for a ‘network meta-analysis’ (also called a ‘mixed treatment comparison’). The code below shows how such an analysis can be conducted using an arm-based and a contrast-based model (see Salanti et al., 2008, for more details).

Concepts

medicine, psychology, smoking, odds ratios, network meta-analysis

Author(s)

Wolfgang Viechtbauer, wvb@metafor-project.org, https://www.metafor-project.org

Source

Hasselblad, V. (1998). Meta-analysis of multitreatment studies. Medical Decision Making, 18(1), 37–43. https://doi.org/10.1177/0272989X9801800110

References

Gleser, L. J., & Olkin, I. (2009). Stochastically dependent effect sizes. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 357–376). New York: Russell Sage Foundation.

Law, M., Jackson, D., Turner, R., Rhodes, K., & Viechtbauer, W. (2016). Two new methods to fit models for network meta-analysis with random inconsistency effects. BMC Medical Research Methodology, 16, 87. https://doi.org/10.1186/s12874-016-0184-5

Salanti, G., Higgins, J. P. T., Ades, A. E., & Ioannidis, J. P. A. (2008). Evaluation of networks of randomized trials. Statistical Methods in Medical Research, 17(3), 279–301. https://doi.org/10.1177/0962280207080643

Examples

### copy data into 'dat' and examine data
dat <- dat.hasselblad1998
dat

## Not run: 

### load metafor package
library(metafor)

### create network graph ('igraph' package must be installed)
library(igraph, warn.conflicts=FALSE)
pairs <- data.frame(do.call(rbind,
   sapply(split(dat$trt, dat$study), function(x) t(combn(x,2)))), stringsAsFactors=FALSE)
lvls <- c("no_contact", "self_help", "ind_counseling", "grp_counseling")
pairs$X1 <- factor(pairs$X1, levels=lvls)
pairs$X2 <- factor(pairs$X2, levels=lvls)
tab <- table(pairs[,1], pairs[,2])
tab # adjacency matrix
g <- graph_from_adjacency_matrix(tab, mode = "plus", weighted=TRUE, diag=FALSE)
vertex_attr(g, "name") <- c("No Contact", "Self-Help",
                            "Individual\nCounseling", "Group\nCounseling")
plot(g, edge.curved=FALSE, edge.width=E(g)$weight, layout=layout_on_grid,
     vertex.size=45, vertex.color="lightgray", vertex.label.color="black", vertex.label.font=2)

### calculate log odds for each study arm
dat <- escalc(measure="PLO", xi=xi, ni=ni, add=1/2, to="all", data=dat)
dat

### convert trt variable to factor with desired ordering of levels
dat$trt <- factor(dat$trt, levels=c("no_contact", "self_help", "ind_counseling", "grp_counseling"))

### add a space before each level (this makes the output a bit more legible)
levels(dat$trt) <- paste0(" ", levels(dat$trt))

### network meta-analysis using an arm-based model with fixed study effects
### by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons
res <- rma.mv(yi, vi, mods = ~ factor(study) + trt - 1,
              random = ~ trt | study, rho=1/2, data=dat, btt="trt")
res

### all pairwise odds ratios of interventions versus no contact
predict(res, newmods=cbind(matrix(0, nrow=3, ncol=24), diag(3)),
        intercept=FALSE, transf=exp, digits=2)

### all pairwise odds ratios comparing interventions (ic vs sh, gc vs sh, and gc vs ic)
predict(res, newmods=cbind(matrix(0, nrow=3, ncol=24), rbind(c(-1,1,0), c(-1,0,1), c(0,-1,1))),
        intercept=FALSE, transf=exp, digits=2)

### forest plot of ORs of interventions versus no contact
dev.new(width=7, height=4)
par(mar=c(5,4,1,2))
forest(c(0,res$beta[25:27]), sei=c(0,res$se[25:27]), psize=1, xlim=c(-3,4), digits=c(2,1), efac=2,
       slab=c("No Contact", "Self-Help", "Individual Counseling", "Group Counseling"),
       atransf=exp, at=log(c(.5, 1, 2, 4, 8)), xlab="Odds Ratio for Intervention vs. No Contact",
       header=c("Intervention", "Odds Ratio [95% CI]"))

############################################################################

### restructure dataset to a contrast-based format
dat <- to.wide(dat.hasselblad1998, study="study", grp="trt", ref="no_contact", grpvars=6:7)

### calculate log odds ratios for each treatment comparison
dat <- escalc(measure="OR", ai=xi.1, n1i=ni.1,
                            ci=xi.2, n2i=ni.2, add=1/2, to="all", data=dat)
dat

### calculate the variance-covariance matrix of the log odds ratios for multitreatment studies
### see Gleser & Olkin (2009), equation (19.11), for the covariance equation
calc.v <- function(x) {
   v <- matrix(1/(x$xi.2[1] + 1/2) + 1/(x$ni.2[1] - x$xi.2[1] + 1/2), nrow=nrow(x), ncol=nrow(x))
   diag(v) <- x$vi
   v
}
V <- bldiag(lapply(split(dat, dat$study), calc.v))

### add contrast matrix to dataset
dat <- contrmat(dat, grp1="trt.1", grp2="trt.2")
dat

### network meta-analysis using a contrast-based random-effects model
### by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons
res <- rma.mv(yi, V, mods = ~ self_help + ind_counseling + grp_counseling - 1,
              random = ~ comp | study, rho=1/2, data=dat)
res

### predicted odds ratios of interventions versus no contact
predict(res, newmods=diag(3), transf=exp, digits=2)

### fit random inconsistency effects model (see Law et al., 2016)
res <- rma.mv(yi, V, mods = ~ self_help + ind_counseling + grp_counseling - 1,
              random = list(~ comp | study, ~ comp | design), rho=1/2, phi=1/2, data=dat)
res


## End(Not run)

metadat documentation built on April 6, 2022, 5:08 p.m.