Nothing
#' Provides a summary of missingness in a dataset.
#'
#' Generates a summary of the percentage of missing data in a dataset. Provides
#' insight on the appropriateness of imputation methods. For example, if 30\%
#' of data is missing, then perhaps this is too much to impute.
#'
#' @param aDataFrame A data.frame containing columns that will be assessed for
#' missingness.
#'
#' @return A data frame that summarizes percent missingness for each column of
#' a dataset.
#'
#' @examples
#' data(example_references_metagear)
#' impute_missingness(example_references_metagear)
#'
#' @export impute_missingness
impute_missingness <- function(aDataFrame) {
columnMissingness <- colSums(is.na(aDataFrame)) / nrow(aDataFrame) * 100
cat("\nSummary of missingness:\n\n")
summary.columns <- data.frame(
"COLUMN" = names(columnMissingness),
"PERCENT_MISSINGNESS" = columnMissingness,
"IMPUTATIONS" = colSums(is.na(aDataFrame)))
print(summary.columns,
row.names = FALSE,
digits = 2,
na.print = "",
quote = FALSE )
cat("\nTotal missingness: ",
format(sum(is.na(aDataFrame)) / prod(dim(aDataFrame)) * 100, digits = 2),
"% (" ,sum(is.na(aDataFrame)),
" imputations needed)\n\n",
sep = "")
return (summary.columns)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.