Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----echo = FALSE-------------------------------------------------------------
options(crayon.enabled = FALSE, cli.num_colors = 0)
## -----------------------------------------------------------------------------
library(metasnf)
dl <- data_list(
list(cort_t, "cortical_thickness", "neuroimaging", "continuous"),
list(cort_sa, "cortical_surface_area", "neuroimaging", "continuous"),
list(subc_v, "subcortical_volume", "neuroimaging", "continuous"),
list(income, "household_income", "demographics", "continuous"),
list(pubertal, "pubertal_status", "demographics", "continuous"),
uid = "unique_id"
)
sc <- snf_config(dl, n_solutions = 5)
sc
## -----------------------------------------------------------------------------
sc$"settings_df"
# Printed as a regular data frame
sc$"settings_df" |> as.data.frame()
## -----------------------------------------------------------------------------
dfl <- sc$"dist_fns_list"
dfl
names(dfl)
dfl$"cnt_dist_fns"[[1]]
## -----------------------------------------------------------------------------
cfl <- sc$"clust_fns_list"
cfl
names(cfl)
cfl[[1]]
## -----------------------------------------------------------------------------
wm <- sc$"weights_matrix"
wm
class(wm) <- "matrix"
wm[1:5, 1:5]
## -----------------------------------------------------------------------------
sc <- snf_config(
dl,
n_solutions = 100
)
sc
## -----------------------------------------------------------------------------
# Through minimums and maximums
sc <- snf_config(
dl,
n_solutions = 100,
min_k = 10,
max_k = 60,
min_alpha = 0.3,
max_alpha = 0.8
)
# Through specific value sampling
sc <- snf_config(
dl,
n_solutions = 20,
k_values = c(10, 25, 50),
alpha_values = c(0.4, 0.8)
)
## -----------------------------------------------------------------------------
# Exponential dropping
sc <- snf_config(
dl,
n_solutions = 20,
dropout_dist = "exponential" # the default behaviour
)
sc
# Uniform dropping
sc <- snf_config(
dl,
n_solutions = 20,
dropout_dist = "uniform"
)
sc
# No dropping
sc <- snf_config(
dl,
n_solutions = 20,
dropout_dist = "none"
)
sc
## -----------------------------------------------------------------------------
sc <- snf_config(
dl,
n_solutions = 20,
min_removed_inputs = 3
)
# No row will exclude fewer than 3 data frames during SNF
sc
## -----------------------------------------------------------------------------
sc <- snf_config(
dl,
n_solutions = 10,
alpha_values = c(0.3, 0.5, 0.8),
k_values = c(20, 40, 60),
dropout_dist = "none"
)
sc
## -----------------------------------------------------------------------------
set.seed(42)
sc_1 <- snf_config(
dl,
n_solutions = 25,
k_values = 50
)
sc_2 <- snf_config(
dl,
n_solutions = 25,
k_values = 80
)
full_sc <- merge(sc_1, sc_2)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.