Nothing
##### SMD -----------------
test_that("1. EBIACT-CAM - analysis (SMD)", {
skip_on_cran()
# daf <- read.table("clipboard", header = TRUE, sep = "", dec = ",")
# meta::metacont(
# mean.e =.as_numeric(daf$mean_cases), mean.c =.as_numeric(daf$mean_controls),
# sd.e =.as_numeric(daf$sd_cases), sd.c =.as_numeric(daf$sd_controls),
# n.e =.as_numeric(daf$n_cases), n.c = .as_numeric(daf$n_controls), sm = "SMD"
# )
#
# load_all()
dat = readxl::read_excel(
paste0("D:/drive_gmail/Recherche/metaumbrella/",
"data-raw/test-raw/dat-ebi-asd-SMD.xlsx")
)
resv1.0.11 = readxl::read_excel(
paste0("D:/drive_gmail/Recherche/metaumbrella/",
"data-raw/test-raw/res-ebi-asd-SMD.xlsx")
)
# xdat = dat[dat$factor == "Cheuk (2011)_ACUP_Social-communication", ]
# xdat$multiple_es[c(1, 2, 3, 5)] <- NA
# View(subset(dat, factor == "Ostinelli (2025)_TMS ([repetitive] transcranial magnetic stimulation)_Combined ADHD symptoms (inattentive + hyperactive/impulsive)_Self-rated_At study endpoint (closest to 12 weeks)"))
umb = umbrella(dat,
mult.level = TRUE, method.var = "REML",
r = 0.8, pre_post_cor = 0.5)
resv1.1.0 = summary(umb)
expect_true(
max(abs(resv1.0.11$value - resv1.1.0$value)) < 0.20)
res = data.frame(F1=resv1.0.11$Factor,
F2=resv1.1.0$Factor,
F1F2 = resv1.0.11$Factor == resv1.1.0$Factor,
v1 = .as_numeric(resv1.0.11$value),
v2 = .as_numeric(resv1.1.0$value),
v12 = resv1.0.11$value_CI,
v22 = resv1.1.0$value_CI,
v1v2 = abs(.as_numeric(resv1.1.0$value) -
.as_numeric(resv1.0.11$value)))
res_pb = res[abs(res$v1v2) > 0.2, ]
expect_true(mean(abs(.as_numeric(resv1.1.0$value) -
.as_numeric(resv1.0.11$value))) < 0.008)
expect_true(mean(abs(.as_numeric(resv1.1.0$p_value) -
.as_numeric(resv1.0.11$p_value))) < 0.009)
# View(res)
# View(res_pb)
})
test_that("2. EBIACT-CAM - analysis (OR)", {
skip_on_cran() # daf <- read.table("clipboard", header = TRUE, sep = "", dec = ",")
# meta::metacont(
# mean.e =.as_numeric(daf$mean_cases), mean.c =.as_numeric(daf$mean_controls),
# sd.e =.as_numeric(daf$sd_cases), sd.c =.as_numeric(daf$sd_controls),
# n.e =.as_numeric(daf$n_cases), n.c = .as_numeric(daf$n_controls), sm = "SMD"
# )
#
# load_all()
dat = readxl::read_excel(
paste0("D:/drive_gmail/Recherche/metaumbrella/",
"data-raw/test-raw/dat-ebi-asd-OR.xlsx")
)
resv1.0.11 = readxl::read_excel(
paste0("D:/drive_gmail/Recherche/metaumbrella/",
"data-raw/test-raw/res-ebi-asd-OR.xlsx")
)
# xdat = dat[dat$factor == "Cheuk (2011)_ACUP_Social-communication", ]
# xdat$multiple_es[c(1, 2, 3, 5)] <- NA
# View(subset(dat, factor == "Ostinelli (2025)_TMS ([repetitive] transcranial magnetic stimulation)_Combined ADHD symptoms (inattentive + hyperactive/impulsive)_Self-rated_At study endpoint (closest to 12 weeks)"))
umb = umbrella(dat,
max_asymmetry = 50,
mult.level = TRUE, method.var = "PM",
r = 0.8, pre_post_cor = 0.5)
resv1.1.0 = summary(umb)
res = data.frame(F1=resv1.0.11$Factor,
F2=resv1.1.0$Factor,
F1F2 = resv1.0.11$Factor == resv1.1.0$Factor,
v1 = .as_numeric(resv1.0.11$value),
v2 = .as_numeric(resv1.1.0$value),
v12 = resv1.0.11$value_CI,
v22 = resv1.1.0$value_CI,
v1v2 = abs(.as_numeric(resv1.1.0$value) -
.as_numeric(resv1.0.11$value)))
res_pb = res[abs(res$v1v2) > 0.05, ]
# View(res)
# View(res_pb)
expect_true(mean(abs(.as_numeric(resv1.1.0$value) -
.as_numeric(resv1.0.11$value))) < 0.01)
expect_true(mean(abs(.as_numeric(resv1.1.0$p_value) -
.as_numeric(resv1.0.11$p_value))) < 0.01)
})
test_that("3. EBIACT-CAM - GRADE (SMD)", {
skip_on_cran()
dat = readxl::read_excel(
paste0("D:/drive_gmail/Recherche/metaumbrella/",
"data-raw/test-raw/dat-ebi-asd-SMD.xlsx")
)
dat$Factor = dat$factor
res_GRADE = readxl::read_excel(
paste0("D:/drive_gmail/Recherche/metaumbrella/",
"data-raw/test-raw/res-ebi-asd-GRADE.xlsx")
)
res_GRADE = subset(res_GRADE, !measure %in% c("OR", "RR"))
dat_en = merge(dat, res_GRADE[, c("Factor", "indirectness")],
by = "Factor")
dat_en$rob1_report = tolower(gsub(" risk", "", dat_en$RoB_Reporting))
dat_en$rob1_report[dat_en$rob1_report == "unclear (not indicated)"] <- "unclear"
# view.errors.umbrella(dat_en, "message")
# View(view.errors.umbrella(dat_en))
# dat_en2 = subset(dat_en, factor == "Siafis (child) (2022)_PUFA_Disruptive behaviors")
# umb= umbrella(dat_en2,
umb= umbrella(dat_en,
mult.level = TRUE, method.var = "REML",
r = 0.8, pre_post_cor = 0.5)
res_grade = add.evidence(umb, criteria = "GRADE",
eq_range_or = c(0.8, 1.25),
eq_range_g = c(-0.10, 0.10))
resv1.1.0 = summary(res_grade)
resv1.1.0 = resv1.1.0[order(resv1.1.0$Factor), ]
res_GRADE = res_GRADE[order(res_GRADE$Factor), ]
res_GRADE$GRADE[res_GRADE$GRADE == "Very low"] <- "Very weak"
res_GRADE$GRADE[res_GRADE$GRADE == "Low"] <- "Weak"
resG = res_GRADE
comp = data.frame( as.character(resv1.1.0$Factor) == as.character(resG$Factor),
as.character(resv1.1.0$Factor),
newV = as.character(resv1.1.0$Class),
as.character(resG$Factor),
Ancien = as.character(resG$GRADE),
comparaison = resv1.1.0$Class == resG$GRADE,
RoB = resG$down_rob,
Het = resG$down_het,
Indi = resG$down_ind,
Imp = resG$down_imp,
Pub = resG$down_pubbias,
Pub = resG$down_pubbias,
stud = resG$n_studies,
hetA = resG$down_hetA,
hetB = resG$down_hetB,
CI_v1 = resv1.1.0$eG_CI,
PI_v1 = resv1.1.0$PI_eG,
CI_v2 = resG$eG_CI,
PI_v2 = resG$PI_eG
)
# View(comp[which(!comp$comparaison), ])
expect_true(nrow(comp[which(!comp$comparaison), ]) / nrow(comp) < 0.10)
})
test_that("4. EBIACT-CAM - GRADE (OR)", {
skip_on_cran()
dat = readxl::read_excel(
paste0("D:/drive_gmail/Recherche/metaumbrella/",
"data-raw/test-raw/dat-ebi-asd-OR.xlsx")
)
dat$Factor = dat$factor
res_GRADE = readxl::read_excel(
paste0("D:/drive_gmail/Recherche/metaumbrella/",
"data-raw/test-raw/res-ebi-asd-GRADE.xlsx")
)
res_GRADE = subset(res_GRADE, measure %in% c("OR", "RR"))
dat_en = merge(dat, res_GRADE[, c("Factor", "indirectness")],
by = "Factor")
dat_en$rob1_report = tolower(gsub(" risk", "", dat_en$RoB_Reporting))
dat_en$rob1_report[dat_en$rob1_report == "unclear (not indicated)"] <- "unclear"
# view.errors.umbrella(dat_en, "message")
# View(view.errors.umbrella(dat_en))
# dat_en2 = subset(dat_en, factor == "Siafis (child) (2022)_NAC_Restricted/repetitive behaviors")
# umb= umbrella(dat_en2,
umb= umbrella(dat_en,
max_asymmetry = 45,
mult.level = TRUE, method.var = "PM",
r = 0.8, pre_post_cor = 0.5)
res_grade = add.evidence(umb, criteria = "GRADE",
eq_range_or = c(0.8, 1.25),
eq_range_g = c(-0.10, 0.10))
resv1.1.0 = summary(res_grade)
resv1.1.0 = resv1.1.0[order(resv1.1.0$Factor), ]
res_GRADE = res_GRADE[order(res_GRADE$Factor), ]
res_GRADE$GRADE[res_GRADE$GRADE == "Very low"] <- "Very weak"
res_GRADE$GRADE[res_GRADE$GRADE == "Low"] <- "Weak"
resG = res_GRADE
comp = data.frame( as.character(resv1.1.0$Factor) == as.character(resG$Factor),
as.character(resv1.1.0$Factor),
newV = as.character(resv1.1.0$Class),
as.character(resG$Factor),
Ancien = as.character(resG$GRADE),
comparaison = resv1.1.0$Class == resG$GRADE,
RoB = resG$down_rob,
Het = resG$down_het,
Indi = resG$down_ind,
Imp = resG$down_imp,
Pub = resG$down_pubbias,
Pub = resG$down_pubbias,
stud = resG$n_studies,
hetA = resG$down_hetA,
hetB = resG$down_hetB,
CI_v1 = resv1.1.0$eG_CI,
PI_v1 = resv1.1.0$PI_eG,
CI_v2 = resG$eG_CI,
PI_v2 = resG$PI_eG,
resG$rob
)
# View(comp[which(!comp$comparaison), ])
expect_true(nrow(comp[which(!comp$comparaison), ]) / nrow(comp) < 0.10)
})
test_that("EBI-ADHD-ERRORS", {
skip_on_cran()
dat = readxl::read_excel(
paste0("D:/drive_gmail/Recherche/metaumbrella/",
"data-raw/test-raw/ebi-adhd-errors.xlsx")
)
res = umbrella(dat)
expect_true(nrow(summary(res)) == 4)
})
test_that("3. EBI-ADHD - analysis (SMD)", {
skip_on_cran()
#
# daf <- read.table("clipboard", header = TRUE, sep = "", dec = ",")
# meta::metacont(
# mean.e =.as_numeric(daf$mean_cases), mean.c =.as_numeric(daf$mean_controls),
# sd.e =.as_numeric(daf$sd_cases), sd.c =.as_numeric(daf$sd_controls),
# n.e =.as_numeric(daf$n_cases), n.c = .as_numeric(daf$n_controls), sm = "SMD"
# )
# meta::metagen(TE = daf$value, lower = daf$ci_lo, upper = daf$ci_up)
# meta::metacont(
# mean.e =daf$mean_exp, mean.c =daf$mean_controls,
# sd.e =daf$sd_exp, sd.c =daf$sd_controls,
# n.e =daf$n_cases, n.c = daf$n_controls, sm = "SMD"
# )
# load_all()
dat = readxl::read_excel(
paste0("D:/drive_gmail/Recherche/metaumbrella/",
"data-raw/test-raw/dat-ebi-adhd-SMD.xlsx")
)
resv1.0.11 = readxl::read_excel(
paste0("D:/drive_gmail/Recherche/metaumbrella/",
"data-raw/test-raw/res-ebi-adhd-SMD.xlsx")
)
# datS = dat[dat$factor == "Storebo (2019)_Social skill training_Combined ADHD symptoms (inattentive + hyperactive/impulsive)_Teacher-rated_At follow-up (closest to 26 weeks)", ]
# View(subset(dat, factor == "Ostinelli (2025)_TMS ([repetitive] transcranial magnetic stimulation)_Combined ADHD symptoms (inattentive + hyperactive/impulsive)_Self-rated_At study endpoint (closest to 12 weeks)"))
umb = umbrella(dat,
mult.level = TRUE, method.var = "REML",
r = 0.8, pre_post_cor = 0.5)
resv1.1.0 = summary(umb)
res = data.frame(F1=resv1.0.11$Factor,
F2=resv1.1.0$Factor,
F1F2 = resv1.0.11$Factor == resv1.1.0$Factor,
v1 = .as_numeric(resv1.0.11$value),
v2 = .as_numeric(resv1.1.0$value),
v12 = resv1.0.11$value_CI,
v22 = resv1.1.0$value_CI,
v1v2 = abs(.as_numeric(resv1.1.0$value) -
.as_numeric(resv1.0.11$value)))
res_pb = res[abs(res$v1v2) > 0.1, ]
# View(res)
# View(res_pb)
expect_true(mean(abs(.as_numeric(resv1.1.0$value) -
.as_numeric(resv1.0.11$value))) < 0.005)
expect_true(mean(abs(.as_numeric(resv1.1.0$p_value) -
.as_numeric(resv1.0.11$p_value))) < 0.005)
})
test_that("4. EBI-ADHD - analysis (OR)", {
skip_on_cran()
# daf <- read.table("clipboard", header = TRUE, sep = "", dec = ",")
# meta::metacont(
# mean.e =.as_numeric(daf$mean_cases), mean.c =.as_numeric(daf$mean_controls),
# sd.e =.as_numeric(daf$sd_cases), sd.c =.as_numeric(daf$sd_controls),
# n.e =.as_numeric(daf$n_cases), n.c = .as_numeric(daf$n_controls), sm = "SMD"
# )
#
# load_all()
dat = readxl::read_excel(
paste0("D:/drive_gmail/Recherche/metaumbrella/",
"data-raw/test-raw/dat-ebi-adhd-OR.xlsx")
)
resv1.0.11 = readxl::read_excel(
paste0("D:/drive_gmail/Recherche/metaumbrella/",
"data-raw/test-raw/res-ebi-adhd-OR.xlsx")
)
# xdat = dat[dat$factor == "Cheuk (2011)_ACUP_Social-communication", ]
# xdat$multiple_es[c(1, 2, 3, 5)] <- NA
# View(subset(dat, factor == "Ostinelli (2025)_TMS ([repetitive] transcranial magnetic stimulation)_Combined ADHD symptoms (inattentive + hyperactive/impulsive)_Self-rated_At study endpoint (closest to 12 weeks)"))
umb = umbrella(dat,
max_asymmetry = 20,
mult.level = TRUE, method.var = "PM",
r = 0.8, pre_post_cor = 0.5)
resv1.1.0 = summary(umb)
res = data.frame(F1=resv1.0.11$Factor,
F2=resv1.1.0$Factor,
F1F2 = resv1.0.11$Factor == resv1.1.0$Factor,
v1 = .as_numeric(resv1.0.11$value),
v2 = .as_numeric(resv1.1.0$value),
v12 = resv1.0.11$value_CI,
v22 = resv1.1.0$value_CI,
v1v2 = abs(.as_numeric(resv1.1.0$value) -
.as_numeric(resv1.0.11$value)))
res_pb = res[abs(res$v1v2) > 0.05, ]
# View(res)
# View(res_pb)
expect_true(mean(abs(.as_numeric(resv1.1.0$value) -
.as_numeric(resv1.0.11$value))) < 0.01)
expect_true(mean(abs(.as_numeric(resv1.1.0$p_value) -
.as_numeric(resv1.0.11$p_value))) < 0.01)
})
test_that("means alone wth / wthout n_cases", {
skip_on_cran()
dfwoN<- subset(df.SMD, select=-c(n_cases, n_controls,
value,
ci_lo, ci_up, se))
expect_error(umbrella(dfwoN, verbose=FALSE, seed = 4321))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.