Nothing
#-----------------------------------------------------------------------------#
# #
# MATRIX-BASED FLEXIBLE PROJECT PLANNING #
# #
# Written by: Zsolt T. Kosztyan, Aamir Saghir #
# Department of Quantitative Methods #
# University of Pannonia, Hungary #
# kosztyan.zsolt@gtk.uni-pannon.hu #
# #
# Last modified: June 2024 #
#-----------------------------------------------------------------------------#
#' @export
minscore_PEM<- function(PEM,P=PEM, Q=1-PEM)
{
if (!requireNamespace("pracma", quietly = TRUE)) {
stop(
"Package \"pracma\" must be installed to use this function.",
call. = FALSE
)
}
if (!requireNamespace("Rfast", quietly = TRUE)) {
stop(
"Package \"Rfast\" must be installed to use this function.",
call. = FALSE
)
}
score=1
N=0
p=diag(P)
q=diag(Q)
pem=diag(PEM)
N=pracma::numel(pem)
pqmin=Rfast::rowMins(matrix(c(p,q),ncol=2),value=TRUE)
# for(i in 1:N) {
#if ((p[i]>0) & (p[i]<1))
# N=N+1
#if (pem[i]==1)
# score=score*p[i]
#if (pem[i]==0)
# score=score*q[i]
#if (pem[i]<1 & pem[i]>0)
# score=score*min(p[i],q[i])}
if (N>0) #The score of the project scenario is the geometric mean of maximum
score=prod(matrix(c(p[pem==1], q[pem==0], pqmin[pem>0 & pem<1])))^{1/N}
return(score)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.